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We investigate changes of the rotation axis caused by mantle convection.
In the first part, the coupled problem of viscoelastic deformation and rota-
tional dynamics is solved for simple Earth models in order to compute how
the rotation axis changes following emplacement of non-hydrostatic excess
masses. It is shown that both direct integration and a computationally more
effective “quasi-static integration” give virtually identical results. With the
latter method, results of eigenmode and time domain approach were com-
pared, with little difference found. Although the number of viscoelastic
relaxation eigenmodes is infinite, for an adiabatic Earth mantle only two
eigenmodes need be considered for an approximately correct description,
and an even simpler steady-state solution can be used. The results indicate
that for our best estimates of present-day mantle properties, the maximum
speed of polar motion is about 1 degree per million years, and during Ceno-
zoic times the rotation axis has always followed closely the axis of maximum
non-hydrostatic moment of inertia imposed by advection of mantle density
heterogeneities. The latter was calculated for a number of tomographic
models and inferred flow fields. Results indicate on average a slow motion of
about 5 degrees in 60 Ma roughly towards Greenwich, which is not in conflict
with paleomagnetic results. Only one of the models additionally predicted a
faster motion prior to about 80 Ma in a direction similar to what is inferred
from paleomagnetism.

1. INTRODUCTION
1.1. Qverview

While the geodetically observed rates of polar motion
[Dickman, 1977) are believed to be to a large part due to
glacial events, the longer-term polar motion may largely

Ice Sheets, Sea Level and the Dynamic Earth
Geodynamics Series 29

Copyright 2002 by the American Geophysical Union
10.1029/029GD15

233

be due to redistributions of masses caused by convec-
tion in the Earth’s mantle [e.g., Ricard and Sabadini,
1990], and convection may still cause a non-negligible
contribution to present-day polar wander. Here we will
elaborate on this issue, and for this purpose we present a
numerical model for changes of the rotation axis caused
by a convecting mantle and compare results with obser-
vations of true polar wander. Some important results
of this model have already been published [Steinberger
and O’Connell, 1997]. Here we expand this work es-
sentially in two ways: Firstly, the model of viscoelastic
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relaxation that is used to compute changes of the rota-
tion axis following a change in the moment of inertia is
introduced in more detail. In this section some of the
printing errors that occurred in our previous publica~
tion will also be pointed out. We will reiterate the con-
clusion that normally the rotation axis follows imposed
changes of the moment of inertia tensor. Secondly, al-
though only changes of the degree two non-hydrostatic
geoid cause changes in long-term Earth rotation, we will
compute time change of the geoid up to higher degree.
Through this additional information, we are better able
to pin down which features, when advected, are most
responsible for the change in nonhydrostatic moment
of inertia. Furthermore, we compute time changes of
the moment of inertia tensor for a greater number of
tomographic models, thus corroborating the robustness
of our results:

Because the Earth is not rigid, it makes sense to de-
fine the axis of rotation of a reference frame relative to
an inertial frame of reference. In this work, the calcula-
tions of the “rotation axis” will without further mention
always refer to “Tisserand’s mean axes of the body”.
This reference frame is characterized by zero net rota-
tion when integrated over the entire mantle, and will be
also referred to as “mean mantle” reference frame.

When comparing our computations with observations
of true polar wander, we need to bear in mind that, be-
sides the obvious axial dipole hypothesis, the compari-
son also assumes that the mean mantle reference frame
in which our calculations are performed and which can-
not be directly constrained by observations, and the
“hotspot reference frame” which is based on observa-
tions and to which the observed “true polar wander”

refers, are essentially the same. If hotspots move in a -

convecting mantle, this is not necessarily the case, ayd
we have previously computed how the observed “true
polar wander” curve changes when it is converted to a
mean mantle reference frame, taking computed hotspot
motions into account [Steinberger and O’Connell, 2000].
Since the difference turned out to be small, it will be
disregarded for the purpose of this paper.

1.2. Changes of the Earth’s Rotation Azis - Dynamic
Modelling

The subject of long-term changes in the Earth'’s rota-
tion axis and its relation to mass redistributions inside
the Earth has a rather long history. The idea that the
rotation axis might significantly change relative to some
reference frame tied to the solid Earth, and that, for ex-
ample, poles might move to where the equator used to

» be, and vice versa, was proposed much earlier than plate
tectonics.

Darwin [1876] made the first quantitative attempt to
deal with changes of the Earth’s axis of rotation due to
geological changes. Darwin tried to solve the problem
of how the rotation axis changes if there is an uplift
of material at some area at the Earth’s surface. He
arrived at the result that a change in the rotation axis
is possible. However his work was marred by several
errors. The first one is an algebraic error discovered
by Lambert [1931]. The correction is given by Jeffreys
[1952] on page 343. With this correction, the conclusion
is reversed, and the rotation axis should not move a
significant amount. In addition, Darwin made another
error in assuming that the axis of the geoid (as defined
by Gold [1955]) moves towards the rotation axis at a
rate proportional to the separation of the axis of figure
(following Gold [1955] defined as the principal axis of
the inertia tensor with the largest moment of inertia)
and the rotation axis. This error is pointed out by Munk

- [1956]. His paper reviews Darwin’s paper, its errors,

and the discussions it sparked during the 55 years until
the firgt error was detected.

The first qualitatively correct treatment is given by
Gold [1955]. He describes how an excess mass that
is added to the Earth leads to a slow deformation of
the Earth and a change of the rotation axis, causing
the excess mass to move slowly toward the equator
(without being displaced relative to the solid Earth).
This process is described in Figure 1, where four excess
masses are added, such that the center of mass does
not change, and only one non-diagonal inertia tensor
element changes due to the excess masses.

Gold’s paper inspired Burgers [1955] to treat the
problem quantitatively. Burgers considers a homoge-
neous viscoelastic sphere, the moments of inertia of
which are changed by a small amount. He arrives at a
solution, which consists of small oscillations (“wobble”)
of the rotation axis and a long-term mean motion. The
subject is reviewed by Inglis [1957].

Munk and MacDonald [1960] discuss how an approx-
imate solution for a layered sphere may be obtained
using the concept of Love numbers assuming a Maxwell
viscoelastic rheology. More recently, calculations for a
layered viscosity structure have been done. Sabadini et
al. [1982] treat the changes of the Earth’s rotation in re-
sponse to growing and melting of large ice sheets. They
look at an Earth model composed of an elastic litho-
sphere, a viscoelastic mantle and an inviscid core, i.e.
a three-layer-model. They treat the equations by do-
ing a Laplace transform and calculating eigenmodes of
the relaxation. Wu and Peltier [1984] perform a similar
kind of analysis, but they arrive at a different result.
They claim that Sabadini et al. [1982] did an invalid
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Figure 1. Interplay between deformation and change of the rotation axis of the Earth. First picture:
Non-hydrostatic excess masses cause the rotation axis of the Earth to change (from the solid to the
dashed line). Second picture: The change in rotation axis causes the Earth to deform (from solid to
dashed outline). Third picture: This change in shape causes the rotation axis to move again. The
process would cease once it has shifted the excess masses to the equator, but this is only approached

asymptotically.

approximation. Sabadini et al. [1984] provide a more
general treatment and show that the two formulations
are equivalent to some extent. They also point out that
a solution requires in addition to the eigenmodes of vis-
coelastic relaxation another set of eigenmodes arising
from the coupling of viscoelastic relaxation and rota-
tional dynamics. Mitrovica and Milne [1998] give a de-
tailed comparison of the two approaches by Sabadini
et al. [1982] and Wu and Peltier [1984] and show, us-
ing a generalized theory, that the two formalisms yield
essentially equivalent predictions.

Sabadini and Yuen [1989] state that the rate of change
in the rotation axis depends on the viscosity structure
and on the chemical structure (i.e. non-adiabatic den-
sity variations). They emphasize that the change of
the rotation axis over long times can put constraints on
both chemical stratification and viscosity distribution
in the mantle and that there are trade-offs between the
style of mantle chemical stratification and the magni-
tude of lower mantle viscosity. Ricard et al. {1992] in-
vestigate how the nature of the 670-km-discontinuity af-
fects the rate of change of the rotation axis. In their cal-
culations, a phase change yields a large rate of change,
whereas the rate is drastically reduced for chemically
stratified models. They use the linearized Liouville
equations valid for small displacements and express vis-
coelastic deformation in terms of eigenmodes. Spada et
al. [1992] compute changes of rotation due to subduc-
tion using an asymptotic expansion for large time of the
nonlinear Liouville equations for an Earth model con-
sisting of an elastic lithosphere, a Maxwell viscoelastic
mantle and an isostatic core. They show that a viscosity
increase with depth is required to achieve realistic rates
of polar wander. Using a viscous quasi-fluid approxi-
mation, Ricard et al. [1993] further discuss the change
of the rotation axis induced by a downgoing cold slab,
depending on the viscosity structure.

More recently, Fang and Hager [1995] have shown
that for a realistic Earth model with continuously vary-
ing density, viscosity and elastic parameters, viscoelas-
tic relaxation cannot be solely expressed in terms of
discrete eigenmodes, and the error made by only con-
sidering discrete modes depends on the exact viscosity
structure. This problem arises because of the so-called
“Maxwell singularities”. For this reason, Hanyk et al.
[1995] proposed a “time-domain approach for the tran-
sient responses in stratified viscoelastic Earth' models”.
On the other hand, Boschi et al. [1999] showed how the
problem of Maxwell singularities can be avoided, and
that hence the eigenmode approach is still valid.

Here we develop an independent and entirely self-
contained algorithm which allows us to use both time-
domain and eigenmode approach to calculate changes of
the Earth’s rotation axis for a rather general viscoelas-
tic Earth model in an efficient manner. The algorithm
is developed and results are presented in section 2. We
will first show that a quasi-static approximation, i.e.
disregarding differences between the axis of figure and
the rotation axis, which give rise to the “Chandler wob-
ble” [Ricard et al. 1993] and direct integration give vir-
tually identical results. We thus verify that the deriva-
tion and numerical implementation of the equations for
quasi-static integration has been done correctly. We
will compare the results of the time domain and eigen-
mode approach and show that for the cases considered
here differences are much smaller than other uncertain-
ties in the model. We will also discuss in which cases a
“steady-state approach”, which allows an even more ef-
fective computation, is suitable. In the end, we will cal-
culate changes in the rotation axis caused by advection
of realistic density anomalies inferred from seismic to-
mography in a realistic flow field [Hager and O’Connell,
1979, 1981]. Our approach is similar to the one pursued
by Richards et al. [1997], except that they use models of
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subduction history instead of mantle flow models based
on seismic tomography in order to compute changes of
the moment of inertia tensor. Thus their approach only
includes the effect of downgoing slabs, whereas our ap-
proach implicitly captures all sources of the changing
density distribution. The difference is probably sig-
nificant, because mantle flow is likely not only driven
by downgoing slabs but also includes active upwellings
[Gurnis et al., 2000].

Along a different line of thought, Goldreich and Toomre
[1969] discuss some statistical aspects of the change of
the rotation axis in time. They make the assumption
that the equatorial bulge does not hinder a change in
the rotation axis, and thus the rotation axis always
follows the axis of maximum non-hydrostatic moment
of inertia. They then simulate a randomly evolving,
almost spherical body. They find, that the rotation
axis changes rapidly when two of the principal non-
hydrostatic moments of inertia become almost equal,
because then the principal axes of the non-hydrostatic
inertia tensor move most rapidly. The procedures out-
lined in this work allow us to calculate how rapid this
change may be, and obtain the maximum speed of
change in the case when the two larger ‘principal mo-
ments of inertia become equal or almost equal (“iner-
tial interchange”). - These results were already shown
by Steinberger and O’Connell [1997] where it was also
shown that under normal circumstances the rotation
axis will indeed follow the axis of maximum non-hydro-
static moment of inertia very closely, thus justifying the
assumption made by Goldreich and Toomre [1969].

1.8. Changes of the Earth’s Rotation Azis -
Observational Aspects

Early work suggested that in the mean lithospheric
frame there occurs no significant change of the rotation
axis [McElhinny, 1973; Jurdy and van der Voo, 1974],
whereas there is a change of the hotspot frame with re-
spect to the rotation axis [Duncan et al., 1972]. This led
to the “mantle roll” hypothesis [Hargraves and Duncan,
1973]: The rotation axis is fixed relative to the mean
lithosphere, whereas the lower mantle “rolls” relative to
both of them. Jurdy [1981] points out that the previous
works cannot be compared directly, because they use
different datasets. By using the same dataset in both
cases she rules out that the different results are due to
different data. She finds no significant motion of the ro-
tation pole relative to the mean lithosphere, but a large
motion of 10 - 12 degrees relative to the hotspots since
early Tertiary, thus confirming the mantle roll hypoth-

* esis.

More recently however this hypothesis has been ques-
tioned. Gordon and Jurdy {1986] showed that both ref-

erence frames are more similar than previously thought
and suggest that both reference frames and the paleo-
magnetic axis might be in relative motion, however with
the paleomagnetic-hotspot motion probably larger than
the relative motion of mean lithospheric and hotspot
reference frame. Gordon and Livermore [1987] extended
the analysis into the late Cretaceous and reported that
in both the mean lithospheric and in the hotspot refer-
ence frame the rotation axis has shifted by 10° — 20° in
the same direction during the last 100 m.y.

Published true polar wander paths usually show the
motion of the pole in the African hotspot reference
frame [Andrews, 1985, Besse and Courtillot, 1991, Pre-
vot et al., 2000}. Despite some differences, recent results
agree on the following general features:

e Fast polar motion of a few degrees during the
past few Myr, roughly towards Greenland. This
is most likely due to glacial effects.

s Slow motion (if any) of a few degrees at most (i.e.,
less than the few degrees uncertainty of a pale-
omagnetic determination) in a similar direction,
during the Tertiary.

In this work, we will compare the calculated motion of
the rotation axis with the most recent results of Besse
and Courtillot {2000, pers. comm.] and Prevot et al.
[2000]. Both these results also agree on faster motion
prior to about 60 to 90 Ma in a roughly opposite direc-
tion, but Tarduno and Smirnov [2001] argue that the
rotation axis has moved by no more than ~ 5° over the
last 130 million yr and that the apparent polar shift
in reality represents hotspot motion. The required rel-
atively fast hotspot motion does not agree with mod-
elling results [e.g. Steinberger, 2000], however models of
mantle flow, and hence hotspot motion, become rather
unreliable prior to the Tertiary: This is also evidenced
by the predictions of polar motion due to mantle flow
presented in section 3.

2. CHANGE OF THE EARTH’S ROTATION.
AXIS DUE IMPOSED CHANGES OF THE
- INERTIA TENSOR

2.1. Overview

In this section we will develop a quantitative treat-

-ment of the process that was first qualitatively ex-

plained by Gold [{1955]). This requires a coupled so-
lution of two problems: How a change of the rotation
axis causes a deformation of the Earth, and how a de-
formation of the Earth causes a change of the rotation
axis. The first part is a continuum mechanics problem,
the second part is a problem of rotational dynamics.



We will first develop a formalism to solve the first
problem separately: For a given change of the rota-
tion vector, what is the deformation that results for an
Earth model consisting of a mantle with Maxwell vis-
coelastic rheology overlying a hydrostatic core? The
formulation will first be given in the Laplace transform
domain, where the governing equations can be written
in the form of a linear system of ordinary differential
equations. This allows us to compute eigenfunctions of
viscoelastic decay. However we do not restrict ourselves
to the eigenfunction approach. We will therefore trans-
form the equations back into time domain and show
how any viscoelastic deformation consists of an imme-
diate elastic deformation corresponding to the change
in the rotation axis and a slow viscoelastic deformation
correspouding to the deviation of the actual shape from
equilibrium shape. We will show how to compute the
equilibrium shape, the immediate elastic deformation
following a change in rotation and the slow viscoelas-
tic deformation in the time domain. Our formulation is
similar to the equations for viscous flow given by Hager
and O’Connell [1979, 1981]. A far more detailed deriva-
tion of this formalism is given by Steinberger [1996],
whereas here only the principal steps are recapitulated.

This formalism will then be combined with the equa-
tions of motion of a rotating body in a rotating frame
of reference (Euler equations, often also referred to as
Liouville equations in the case of a deformable body).
A method to integrate the Euler equations efficiently
will be presented. This method will be used to cal-
culate changes in the Earth’s rotation axis for various
cases. For simplicity a distribution of excess masses as
in Figure 1 will be used.

2.2. Deformation of the Earth due to a Change in
Rotation — Formulation for Viscoelastic Relazation in
the Mantle in the Laplace Transform Domain

Time derivatives in the constitutive relationship of
a Maxwell-body can be eliminated by performing a
Laplace transform. By doing so, each time derivative

operator -g—t is replaced by the Laplace transform vari-
able s.

Changes of the rotation vector only excite displace-
ments du, stress anomalies T, potential anomalies d¢p
and density anomalies dp of spherical harmonic degree
two and zero. Since we only deal with changes of the
rotation axis without changing the rotation rate, we can
neglect degree zero terms. Therefore the spherical har-
monic expansions simplify to

2
Z u1,2mY2m

m=~2

du, =
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where poo and ap are numerical constants, and Yy, are
(unnormalized) spherical harmonics.

After omitting indices 2m and combining u; ... us to
a vector u (which is not identical to du), the governing
equations are transformed into a matrix equation for
spherical harmonic degree two: '
%:%M-u+b1. (2)
Without loss of generality it is assumed that the rota-
tion vector w is aligned with the z-axis. Then the vector
by, which depends on w?, only appears for order m = 0.
Explicit expressions for b; and the matrix M are given
by Steinberger [1996].

2.3. Equations for Viscoelastic Relazation in the
Time Domain

The equation (2) can be symbolically restored to the

time domain by replacing s by 5t after algebraic rear-
rangement. We can thus obtain

d 1
% (-—Ma—‘i +-Mu+ b3) +=by (3)

M; is analogous to M in eqn. (2) in the purely elastic
case. The vector bz depends on w?; and only appears
for order m = 0; %bl depends on w - %’-, and since we
neglect changes in the magnitude of w, it only appears
for orders m = 1 and m = —1. Explicit expressions
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for by and %bl and the matrices My, M3 and My are
given by Steinberger [1996].

We solve equations (3) by splitting u into an equi-
librium value u., and a departure from equilibrium
u,.. Equations for the hydrostatic equilibrium shape
[Clairaut, 1743] can be given in the form of a 2 x 2
matrix equation compatible with eqgn. (2):

d Us _ 1 uUs
5(%) = ;Meq(u6)+b2

us = po/poo- us + biy
Uy = 0,

(4)

where pp is the density of the reference Earth model.
b; and b;4, which depend on w?, only appear for order
m =0, however when computmg the time derivative of
eqn. (4), 2 5Pz and b14 only appear for orders m = 1
and m = -1. Exphcxt expressions for by, Btbg, b4,
at , and M., are given by Steinberger [1996]. These
equations only depend on density structure, not on com-
pressibility, rigidity or viscosity. In the case of a non-
adiabatic density structure, expressions for u; and u,
in terms of us, ug and w?, can be found for the mantle
[Steinberger, 1996). For an adiabatic density structure,
equilibrium values of u; and u; are not uniquely defined,
" but the same expressions may still be used. The expres-
sion for u; then means the elevation of the equipotential
surface from its spherical reference shape.
Hence (3) can be brought into the form

5] (du 1 du,,

9
5t EF‘FMZ“) 'ty (“M3 ar

+ M4une>

(5)
(Note that u still appears on the left-hand-side, whereas
u,. appears on the right-hand-side). The change in
shape therefore consists of two parts: An immediate
elastic change and a slow viscoelastic change (corre-
sponding to the second and third term on the r.h.s.)
In the mantle and crust we therefore solve eqn. (5)
by expressing the change in u as sums of two terms:
%‘tl = W1, + U, with
My, Ob;

di,

a r " and (6)
duy Mo, b du,, M4 une
dr r - ;7- M, dr M

Similarly we solve eqn. (4) in the core by splitting the

change in u; and ug: Q{\%Z =1y, + uy,; and %“?3 =
U3 4 + Ug,p, With

dig, 1

. by . po .
dr ;Mequz"’ = 000

W) U3,a

dugp

dr ©)

- "Meqﬁ2,b = 0) 1."3,6 = &ﬂS,b-

r Poo
Eqns. (6) and (8) describe the immediate elastic defor-
mation, (7) and (9) the slow viscoelastic deformation.

The viscosity appears in none of the matrices. There-
fore, the speed of viscoelastic relaxation is inversely pro-
portional to viscosity: If viscosity is increased by a fac-
tor - n everywhere, the speed of viscoelastic relaxation
decreases by a factor 1/n everywhere. With boundary
conditions prescribed at the surface and internal inter-
faces, as well as a regularity condition at the center of
the Earth; we are now able to separately solve for equi-
librium shape, immediate elastic, and slow viscoelastic
deformation. A detailed treatment of these boundary
conditions was given by [Steinberger, 1996] and is not
repeated here.

For the equilibrium shape, we may find two indepen-
dent solutions which satisfy the regularity condition at
the center, and can construct a general solution with
one free parameter by linear superposition. The free pa-
rameter is determined by matching the gravity bound-
ary condition (corresponding to “all sources of gravity
within”) at the surface.

-For-the elastic deformation we can similarly find a
general solution with one free parameter in the core.
In the mantle, we can find a general solution with four
free parameters, which satisfies the boundary conditions
U3,a = po/Poolts,qe + %bm and 1ty,, = 0 below the core-
mantle boundary. The free parameters (five in total)
are determined by matching the three surface boundary
conditions (no normal or tangential stress; all sources
of gravity within) and enforcing continuity of potential
and gravity across the core-mantle boundary. There is
no continuity requirement for displacement, since it is
undetermined in the core. The theory of elastic defor-
mation has been established long ago, in the context of
calculating the free oscillations of the Earth. Alterman
et al. [1959] use a formalism similar to ours.

For a known right-hand-side vector the solution for
up can be obtained in an analogous way. However in
this case, the right-hand side does not only depend on
the current change of rotation, but on the whole pre-
vious history of rotation. Starting from given initial
values of u in the mantle and u; in the core, values at
any time can be calculated with a numerical time in-
tegration. At each time integration step, 4y and gy
are calculated with a radial integration analogous to
the elastic case. These time derivatives are then used
to calculate changes in u and u;. u and uy; and their
time derivatives are expressed in terms of radial ba-
sis functions, and the time integration is performed on
the expansion coefficients. For basis functions, we ei-



ther use eigenfunctions of viscoelastic decay, which are
described in the next section, or Chebychev polynomi-
als. If eigenfunctions are used, the equations decouple
for each coefficient. Results on how the inertia tensor
would change over time due to slow viscoelastic defor-
mation following an instantaneous change in rotation
after initial hydrostatic equilibrium will be presented in
section 2.5 together with results on changes in the rota-
tion axis obtained by integrating the Euler equations.

2.4. FEigenfunctions of Viscoelastic Decay

If a solution can be expressed in terms of exponen-
tially decaying eigenfunctions u(t) = uge™*, we can
calculate these by solving eqn. (2) without the inhomo-

geneous term:
du 1

—==-M-u (10)
dr r
Solutions to this equation only exist for certain decay
rates. For example, in the case of a viscous, incompress-
ible mantle with layers of constant density we can, at
any time, expand u,. in terms of eigenfunctions of vis-
coelastic (in this case: viscous) decay. In this case, the
displacements of the boundaries from the equilibrium
value drive the flow towards equilibrium. In the case of
n layers, there are n eigenfunctions, and we can express
_ the boundary displacements in terms of eigenfunctions
exactly. For example, in the case of a mantle of constant
density underlain by a core of higher constant density,
there are two eigenfunctions. These modes have been
termed MO and CO in the literature [Peltier, 1976]. The
corresponding decay times (inverse of decay constant s)
depend on viscosity structure. Figure 2 shows the radial
displacement u; as a function of radius for the eigen-
modes of several viscous Earth models. Whereas a de-
crease in upper mantle viscosity leads to only a slight
decrease in decay times, a viscosity increase in a sub-
stantial part of the lower mantle leads to a substantial
increase in decay times. Figure 3 shows sketches of the
displacement field for the two modes MO and CO.
Each chemical boundary with a density jump within
the mantle introduces an additional mode. These modes
are characterized by long decay times and called M1,
M2, ...[Peltier, 1976]. An example is shown in the
bottom right panel of Figure 2, where at depth 670 km
a jump in density equal to the density jump in PREM
is introduced. One question that we will address later
is whether the presence of the M1 mode etc. with its
long decay time will significantly affect the maximum
speed at which the Earth’s rotation axis may change.
In the case of a compressible mantle with Maxwell
rheology, further modes and series of modes arise. These
modes are apparently first reported by Han and Wahr
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[1995], where they are termed “compressible modes”.
They were also found by Vermeersen et al. [1996], and
we have previously given examples of viscoelastic mode
spectra as well [Steinberger, 1996]. These are not in-
cluded here, because we show that despite all the com-
plication, in many cases for an approximately adiabatic
Earth model (such as PREM) consideration of only the
two fundamental modes MO and CO leads to a good
approximation in computing true polar wander.

2.5. Integrating the Euler Equations for a Rotating,
Self-Gravitating Viscoelastic Body

In the absence of external torques, the equation gov-
erning changes of the rotation vector can be written in
the form

%lt'i cwy + Ju %‘ldt—l -“= ~&ikwj - Jem(t) -wm(t). (11)
w; are the components of the angular velocity vector,
which describes the rotation of the frame of reference
in “absolute space” (note that for rotation the concept
of “absolute space” makes sense, whereas it makes no
sense for translatory motion).

The inertia tensor can be expressed in terms of the
five degree two components of us(rg) as defined in equa-
tion (1) [Steinberger, 1996}:

r2 Ty Ty Tis
J=J,I+ —E—a- | T Tos Tos (12)
Poo Tsy Tip Tss

Jss is the moment of inertia for the spherically symmet-

_ ric reference shape, G is the gravity constant,

Ty = —%uzs(re) + 2uxns(TE)
T2 = 2”2—2,5(TE)

T = u21,5(TE)

Ty = 2“2—2.5 (TE)

Too = —3uzs(re) — 2uxns(TE)
Ty = u2-15(rE)

Ty = u21 5(TE)

T3, = uz-1,5(TE)

Tz = %u20,5 (TE)

and the first index group of u is referring to the spherical
harmonic (20, 21, 2-1, 22 or 2-2) and the second index
to the component 5.

J can be split up into a hydrostatic equilibrium part
and a non-hydrostatic part. We also split the total non-
hydrostatic part up into (1) a contribution imposed by
mantle convection — this would be the only part if the
Earth wasn’t rotating, and (2) a contribution caused
by the change of the rotation axis and the immedi-
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Figure 2. Radial displacement of eigenmodes as function of radius for several Earth models. All models
consist of a core (radius 3480 km) of density 10989 kg m™2 in hydrostatic equilibrium and a viscous
incompressible mantle. Mantle density and viscosity structure is indicated for each model. All functions
are normalized to a maximum value of 1. Corresponding displacement fields are indicated by the sketches
in the small rectangles; corresponding decay times are shown below the rectangles.

ate elastic and delayed viscoelastic adjustment to the due to excess masses such as in Figure 1 or sinking
new equilibrium shape. In this section we will calculate  “slablets” such as discussed by Ricard et al. [1993].
changes of the rotation axis caused by initially imposed ~The axis of maximum hydrostatic moment of inertia
non-hydrostatic inertia tensor elements, which may be is by definition parallel to the rotation axis, and one
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Figure 3. Sketch of displacement field (degree two, order zero) for the viscous modes M0 (left) and CO
(right) (polar cross section with core radius not to scale).

of the principal axes of the total non-hydrostatic iner-
tia tensor always follows the rotation axis closely. This
latter statement is actually not self-evident. Spada et
al. [1996a, b] show that for Venus, which is rotating
much more slowly than Earth, significant separations
of more than 1° may occur, but for the Earth, a separa-
tion of only about 0.001” can be expected to be caused
by mass redistributions due to mantle flow, whereas the
observed separation related to the Chandler wobble is
about 0.3". Usually, it will be the principal axis with
the maximum total non-hydrostatic moment of inertia
(axis of figure), which is approximately aligned with
the rotation axis, but not always, as was pointed out
by Ricard et al. [1993): Because of delays in the adjust-
ment of the equatorial bulge, it may be one of the other
principal axes for some period of time. However this ap-
proximate alignment does not imply an alignment of the
rotation axis with the axis of maximum imposed non-
hydrostatic moment of inertia; due to the same reason
of delayed adjustment of the equatorial bulge, a mis-
alignment may result.

We will now present several methods of integrating
the Euler equations:

¢ Direct numerical integration, using no further ap-
proximations

e “Quasi-static’ numerical integration, assuming the
rotation axis is always exactly parallel to the axis
of figure.

e Analytical “steady-state” solution, additionally
assuming that the “build-up” of non-equilibrium
shape is always exactly compensated by viscoelas-
tic decay.

For direct integration the adopted time steps have to
be quite small, since the rotation vector changes with
the period of the Chandler wobble (= 1 year). We will
therefore compare direct and “quasi-static” integration
for a simple viscous Earth model and show that there
is very good agreement. This justifies using the quasi-
static integration. With this method, which is O(10?)
times faster, integration also becomes feasible for more
complicated viscoelastic Earth models, which require
many more variables to be time-integrated. We will
compare several viscous and viscoelastic cases. As it
turns out, the speed with which the rotation axis may
change mostly depends on the viscosity structure. We
will also use an example to show that except for an ini-
tial period of adjustment the “steady-state” assumption
is valid. In the last part we will therefore use the analyt-
ical method to compare several viscous Earth models.
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2.5.1. Direct integration. The change of the inertia
tensor in eqn. (11) consists of a part due to elastic de-

and a part due to viscoelastic defor-

formation aJ
dt el

mation %J{ . The part due to elastic deformation de-

pends only on the change in the rotation vector. We
can therefore write
dJy _ 0Jy dwy
dt ~ Ow, dt

dJy

dt |,. (13)

%ﬂ“ is a third-order tensor. If we call us(rg) = u¢ in
n

the case corresponding to a change from no rotation to a
rotation around the z-axis at the present rate (to obtain
a solution for this case, in eqns. (6) and (8) 1u,, U2,
U3,q, -(%bl, gsz and %bm have been replaced by u,
u3, uz, by, by and by4 respectively) then in a coordinate
system with the z-axis aligned with the rotation axis, it

is
ATy _ rLao

By, U 500G Kin, (14)
with
1 foriln = 131,311,232, 322
Ko = d 23 for iln = 113,223
=1 43 for iln = 333
0 otherwise

However we will solve the Euler equations in a coordi-
nate system that is fixed to the body and therefore have
to transform them accordingly.

If we insert (13) into (11) we obtain

BJ,-, ) dwn dJil
w+ Jin | = = —€ijxwj  Jkm W — ——| W
(awn 1 f? dt jkWj - Jem - Wm dt v {4
(15)
If we now define Mp:.l such that Mp'il- (gi‘:wz + Jin) =

Opn (i.e. Mp; can be calculated by matrix inversion) we
have '
dwn,

& M

dJa
—€ijkwW; * Jem + Wm — Ty

: wt) (16)

ve:
Eqn. (16) enables us to find the change of the rotation
vector, given the rotation vector itself, the inertia ten-
sor and the viscoelastic part of its time change. But
eqns. (5) and (12) allow us to calculate the inertia ten-
sor and the viscoelastic part of its time change, given

. the rotation vector and the present values of the vec-
tor u for all five degree-two spherical harmonics. With

this, we can state the Euler equations as a system of
first-order ordinary differential equations for the three
components of the rotation vector and some parame-
ters which specify the radial functions. In the case of
an incompressible viscous medium with n layers of con-
stant density, for each of the five spherical harmonics,
n parameters are necessary for specification. For ex-
ample, the departure of boundary displacements from
equilibrium, or the coefficients of the expansion of u,,
in terms of the n eigenfunctions of viscoelastic decay
may be chosen.

Figure 4 shows results of a direct integration. As can
be seen, even if the rotation axis and axis of figure ini-
tially agree, the calculated curve of the pole is not a
straight line. It is rather a cycloid curve (a curve de-
scribing the motion of a point on the perimeter of a
rolling wheel). Comparison of the elastic and viscoelas-
tic cases shows

e an increase of the Chandler wobble period from
about 290 days to about 450 days (a well-known
effect)

o an increase of the Chandler wobble amplitude by
about the same factor

o a slight decrease of the secular drift rate of the
pole.

The first two effects are mainly due to immediate elas-
tic deformation, apart from the different density struc-
ture. The third effect is only initially present and is re-
versed for longer time integration, as we will see. Direct
comparison for the same density structure is not possi-
ble, since an incompressible mantle of constant density
corresponds to an adiabatic viscoelastic mantle. The
PREM lower mantle, which is'used here in the viscoelas-
tic case is approximately adiabatic.

2.5.2. Quasi-static integration. Following Ricard et
al. [1993] we now assume that the rotation axis is
aligned with one of the principal axes of the inertia ten-
sor, which shall be the z-axis (therefore wy = wy = 0;
w3 =: wp). Eqn. (16) can then be simplified to

dJ,
W
—d_L_U- Jsp"_ ﬁ] i g;: ve
dt _ W 3 Uel - TRCD ’ ]

ottt \ § 4

[Steinberger, 1996]. J? and J? are the principal mo-
ments of inertia. The third component is approxi-
mately zero, since mostly the direction and not the
magnitude of w changes. Eqgn. (17) may be trans-

(7)
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Figure 4. Direct integration of Euler equations over a period of 5 years, showing the Chandler wobble
and a secular drift of the pole, due to non-hydrostatic inertia tensor elements Ji3 = Ja1 = 10*® kg m?.

Results for a vxscous incompressible mantle (po = 4424 kg m~3%) and a core in hydrostatic equilibrium
(po = 10989 kg m™3) are contrasted with a result for a viscoelastic mantle (parameters for po, ¢+ and
k as in PREM layer 4 = bulk lower mantle) and a core in hydrostatic equilibrium (po as in PREM).
n = 6-10%' Pa s in the mantle, rcmp = 3486 km, rg = 6371 km in both cases. For better visibility,
curves are drawn offset by 5 meters in y direction. Numbers on curves indicate time [in years]. Solid
lines: 2 meters initial distance (on Earth surface) between rotation axis and axis of figure; dashed line:

zero initial distance.

formed into any other coordinate system. It shows
that the immediate elastic deformation has the effect
of simply magnifying the rate of change of w by a fac-

wy | Uel -r’éao -
tor (1_ JV=J7 "7 poo )
number somewhat bigger than 1 for each Earth model
and related to the Love numbers. For example, for the
PREM Earth model, we calculate a value of 1.485376.
Also, it shows that the speed at which the rotation
axis changes is directly proportional to the speed of
viscoelastic relaxation, which is itself inversely propor-
tional to viscosity: If the viscosity is everywhere in-
creased by a factor n, the speed at which the rotation
axis moves will decrease by a factor 1/n. Unlike the case
of direct integration, the rotation vector is now uniquely
determined by the shape, therefore the components of
the rotation vector are not integrated as independent
variables, but were rather calculated from the inertia
tensor at each time step.

Figure 5 compares results from direct and quasi-
static integrations. The left panel shows that there
are virtually no differences in the long-term behavior.
This result, which can be reproduced for any viscous
Earth model, serves as justification to use henceforth
the quasi-static integration. In the viscoelastic case,

, which is a constant

direct integration is extremely slow with the present al-
gorithm, and was thus not performed for any extended
periods of time. The right panel shows that both curves
disagree by a few meters after the pole moved by about
150 km. The initial Chandler wobble is damped down
to a steady-state magnitude of less than 10 cm with
a damping time of about 5000 years. This is a much
longer time than the actual damping time of the wob-
ble, indicating that the anelastic effects acting on short
timescales are more important causes of damping than
viscous effects in the mantle.

Some results of quasi-static integration were pre-
sented by Steinberger and O’Connell [1997], Figure 3.
This figure essentially showed that the speed at which
the rotation axis moves is mainly determined by lower
mantle viscosity. In this figure, the axis labels of the
right panels in the second and third row were mis-
printed. They should correctly be 6 x 10° and 1.2 x 106.
In the caption, the mantle viscosity assumed in the
first, second and fourth row, was given incorrectly; it
is 6 - 102! Pas. The fourth row was calculated for a vis-
cous rheology (not viscoelastic, as wrongly written in
the caption).

In Figure 6 we compare results of the time domain
and the eigenmode approach, for a calculation of vis-
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Figure 5. Direct and quasi-static integration of Euler equations over a period of 25000 years, for a
viscous Earth model and excess masses as in Figure 4. In the left panel, the two curves are virtually
identical. For the direct integration, the rotation axis is initially coinciding with the axis of figure.

coelastic relaxation towards a new equilibrium shape.
For an instantaneous change ‘of the rotation axis:of 1
degree, we plot the corresponding non-diagonal inertia
tensor element as a function of time. In the eigenmode
approach, we fit only radial displacement on chemical
boundaries with a density jump (CMB, surface, internal
boundaries) using an appropriate number of eigenmodes
of viscoelastic decay. For two boundaries (surface and
CMB), we use modes MO and CO, for three boundaries
(surface, 670 km, CMB) we use M0, C0, M1. For four
boundaries (surface, 400 km, 670 km, CMB) we use
MO, CO0, M1, M2, neglecting all the other modes. This
means, we treat a viscoelastic compressible mantle con-
sisting of adiabatic layers entirely analogous to a viscous
mantle, where no other modes occur, with the only dif-
ference that we also take the immediate elastic deforma-
tion into account. The left panel is for constant elastic
parameters throughout the mantle, such that the vis-
coelastic decay spectrum only consists of discrete lines,
whereas in the right panel the elastic parameters vary
continuously. In both cases, the curves for time domain
and eigenmode approach are in very good agreement.
Also, the left and right panel are in most places similar,
indicating again that the exact shape of the functions
u(r) and k(r) has only very minor influence on the vis-
coelastic decay. In the top panels, the relaxation during
the first 10000 years is shown magnified and on a lin-
ear scale, demonstrating that on the left side the two
curves are almost indistinguishable (the same would be
the case for the dashed or dotted lines), whereas on the
" right side there is a difference of a few per cent (which
would be similar for the dotted lines).

2.5.8. Steady-state solution. As we have seen in the
previous section, it is mainly the viscosity structure
which determines the speed at which the rotation axis
may change. Also, starting from an initial state, af-
ter some time a steady state is approached in which
the buildup of non-hydrostatic shape is compensated
by viscoelastic decay. This is illustrated in Figure 7,
which shows the rate of change of the rotation vector as
a function of time, normalized by a factor which takes
into account that the non-hydrostatic mass anomalies,
which are originally at 45°, move to a different latitude
in the process. This normalizing factor is approximately
1 for small values we/w3. A horizontal line corresponds
to steady-state. The figure shows that both for a vis-
cous incompressible mantle with constant density and
an adiabatic compressible mantle steady state is ap-
proached after approximately the decay time of mode
CO (in this case, a few times 10* years). However if
there is a chemical boundary with a density jump within
the mantle the steady state approximation is less valid
on this time scale - the line maintains a finite slope.
This is due to the mode M1 with its very long decay
time. Also, the figure shows that the steady state is ap-
proached faster for a viscous rheology, due to the shorter
relaxation times of eigenmodes. The transition from an
initial state during which the pole moves faster for a vis-
cous rheology (depicted in Figure 4) to a steady state in
which the pole moves faster for the viscoelastic rheology
is shown at very short times on the figure.

We outline here an analytical steady-state solution
for the speed at which the rotation axis changes for a
viscous rheology with layers of constant density. This
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Figure 6. Change of the nondiagonal inertia tensor element due to deformation following an imposed
instantaneous change of the rotation axis by 1 degree — comparison of time domain and eigenmode ap-
proach for various cases of a viscoelastic mantle and a core (with PREM density structure) in hydrostatic
equilibrium. In the top panels, only the continuous lines (for the same models as below) are plotted for

better visibility.

solution can also be applied to the eigenmode approx-
imation for a viscoelastic body with adiabatic layers,
which was described above, by simply replacing equi-
librium radial displacement with equilibrium radial dis-
placement minus radial elastic deformation.

If the rotation axis is parallel to the z-axis, the equi-
librium shape is degree two order zero only, and we

can express the equilibrium radial displacement ueq(r;)
(w.r.t. spherical symmetry) at radii rj,5 = 1,...n in
terms of the radial displacement of the n eigenfunc-
tions of viscous decay ui(rj),s = 1...n. r; are the
radii of boundaries with density jumps, e. g. r1 is the
core-mantle-boundary, r,, the surface, and the number
of eigenfunctions always matches exactly the number of
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boundaries in this case. We can therefore find equilib-
rium coefficients ¢;9,7 = 1...n such that

Ueg(T5) = Cioui(r;)wo (18)
If the rotation axis changes, a degree two order one
component in the spherical harmonic expansion of the
equilibrium shape is.created. Hence an equal and oppo-
site deviation uy. of the actual shape from equilibrium
shape is created. The change in non-equilibrium shape
due to this process is

dw

. £ for Y;
du+(r’) = —ui(rj)en{ g% . (19)
t # for Yo_;

[Steinberger, 1996]. This is compensated by viscoelas-
tic relaxation: The corresponding contribution to the
change of the non-equilibrium shape is

du,,e (Tj)

7 (20)

= siciui(r;)wo
2 .
where s; is the decay constant of mode 1, and c; is the
expansion coefficient of the degree two order one part
of the actual shape minus equilibrium shape in terms
of eigenfunctions, and where, against the usual conven-
tion, the summation index ¢ appears three times. With-
out loss of generality we now assume polar motion in
the x-direction. Assuming steady-state we set

dune(T5)

dupe(r;)
@ |

=0
LT dt

2

in eqns. (19) and (20), and thus obtain

dw, 1
Cig * T 1 T = 84iC

dt Wo (21)

Furthermore, the rotation axis is always very nearly
parallel to the axis of figure. If Jy3; is the inertia tensor
element corresponding to the j-th eigenfunction and J°
is the part of the inertia tensor due to initially imposed
non-hydrostatic excess masses, this means

+Ji3=0
Using eqn. (21) we can find an expression for the change

in w: o
iw_ = _.___E'.J_OL. (22)
dt E cjors,j/s;
J

¢cjJis,;j

For the cases depicted in Figure 7 we obtain the fol-
lowing values:

viscous rheology 1.7386-1018 g2

viscoelastic rheology solid line 1.9427-1018 5—2
' ” dashed line 2.0307-10718 s—2
7 dotted line 1.0486-10~18 52

There is good agreement in the first three cases,
whereas the agreement is rather poor in the last case.
This indicates again that in this case a steady state is
not approached over the time scale shown here, because
in this case the mode M1 with its very long decay time
is present. Once steady state is approached, the speed
of polar wander is significantly reduced in the case of
a chemical boundary, but before that, results with and
without chemical boundary are similar.

The steady-state solution can also be used for a gen-
eral viscoelastic rheology without the eigenmode ap-
proximation, except that the proportionality constant
Cipw Telating &2 and woJY; in an equation equivalent to
eqn. {22) has to be determined by a numerical integra-
tion.

Some results obtained with the steady-state approach
for a viscous rheology were already shown by Steinberger
and O’Connell [1997]. The main conclusion there was
that, except for the unusual case of inertial interchange,
the rotation axis always follows the axis of the maxi-
mum imposed non-hydrostatic moment of inertia very
closely, unless the viscosity of the lower mantle is much
higher than about 10?® Pa s (which most researchers
would not consider very likely). The results can also
be used to estimate the speed of inertial interchange
true polar wander: We had shown that, if mass anoma-
lies ‘are emplaced slowly, the maximum rate of polar

wander %2| o 4/Ji3Cipw, Whereas for instantaneous

max
emplacement, we obtain G Imaz o< J13Cepy; it is always
the slower one of these two rates which is appropriate.
For large-scale mantle flow, the first formula is appropri-
ate: for Ji3 = 1033kg m?/20Myr and a mantle viscosity
6 - 10?1 Pas, the fourth panel of Figure 3 of that paper
had shown a maximum rate of about 30 degrees in 4 Ma.
From Figure 2 of that paper, it can be inferred that cpw
is approximately inversely proportional to lower mantle
viscosity. If we therefore use the lower mantle viscosity
4-10%2 Pas of the viscosity model employed in the next
section, and a growth rate J;3 = 3 - 1032kg m?/50Myr
which turns out to be a typical value for the models
tested in the next section, we obtain a rough estimate
for the maximum speed of polar wander driven by man-
tle convection of about 1 degree per Myr, much slower
than inferred in some recent papers [Kirschvink et al.,
1997, Prevot et al., 2000, Sager and Koppers, 2000].
Numerical models indicate that plume heads may
rise significantly faster than typical mantle flow speeds,
[Larsen and Yuen, 1997, van Keken, 1997]. Using the
second formula, which is appropriate in this case, and "



STEINBERGER AND O’CONNELL 247

viscous incompressible mantle

/

-2x10-18

-2.5x10"18

no internal  phase boundary
boundary

chemical boundary
at depth 670 km  at depth 670 km

-3x10-18

~-3.5%x10"18

(dw,/dt)/(cos(2-atan(w,/w5))) [2]

.
viscoelastic compressible mantle

1 1 1

4x 104

8x104
time [years]

Figure 7. Approach toward steady state for the same models as in the first and second row of Steinberger

and O’Connell [1997), Figure 3. A horizontal line

reasonable numbers, we find that a fast rising plume-
head cannot cause more than a few degrees of true polar
wander during the few Ma of its ascent.

3. CHANGE OF AXIS OF MAXIMUM
NON-HYDROSTATIC MOMENT OF INERTIA
CAUSED BY ADVECTION OF MANTLE
DENSITY HETEROGENEITIES

A more realistic distribution of non-hydrostatic mass
anomalies than the ones used so far can be inferred
from results of seismic tomography. The method of
Hager and O’Connell [1979, 1981] for calculating flow
in a viscous spherical shell, and its extension to cal-
culate the advection of mantle density heterogeneities
has been previously explained in detail [Steinberger and
O’Connell, 1998], and this is not reiterated here. How
this method is used to compute true polar wander was
outlined by Steinberger and O’Connell [1997]. Here we
just reiterate a few important points:

» Because the observed geoid is related to the total
inertia tensor, according to eqn. (12), the degree
two order one coefficients of the observed geoid
very nearly vanish. This is, however, not the case
for the degree two order one coefficients of the
geoid calculated from tomographic Earth mod-
els, unless we specifically choose scaling factors
to convert seismic velocity to density anomalies

corresponds to steady state.

such as to satisfy this condition. When using a
tomographic model to calculate advection of den-
sity heterogeneities and corresponding changes of
the degree two geoid, we therefore usually add the
changes to the observed present degree two geoid,
rather than the calculated one, in order to calcu-
late the past degree two geoid.

Although unrealistic, a free upper boundary has
been shown to yield the best geoid predictions
[Thoraval and Richards, 1997). On the other
hand, imposing plate motions as boundary con-
ditions does not yield a good geoid prediction
unless layering of the flow is imposed artificially
[Cadek and Fleitout, 1999] but we prefer not to do
that. Thus, although somewhat inconsistent, we
regard it most appropriate to compute changes
of the geoid, and hence changes of the rotation
axis, by combining geoid kernels that represent a
free upper boundary [Panasyuk et al., 1996] with a
flow field computed with imposed time-dependent
plate motions [Gordon and Jurdy, 1986; Lithgow-
Bertelloni et al., 1993] as boundary condition.

We directly compare the paleomagnetic axis with
the computed axis of maximum non-hydrostatic
moment of inertia, and neglect the difference be-
tween imposed and total non-hydrostatic moment
of inertia. This approach is justified as long as
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Figure 8. Predicted change of the geoid — degrees 2-12 for the same model as in Steinberger and
(’Connell [1997], Figure 1. Geoid kernels were computed with a code written by 5. V. Panasyuk.

the axis of maximum imposed non-hydrostatic mo-
ment of inertia moves sufficiently slow (i.e., much
slower than the maximum speed of polar wander,
estimated in the previous section to be about 1
degree per Myr). The paleomagnetic results in-
dicate that this was the case at least during the
Tertiary.

All calculations are done for a compressible mantle
with no phase boundaries. All flow fields are expanded
up to spherical harmonic degree and order 31. Figure
8 shows the predicted present-day geoid change for the
same model of true polar wander shown by Steinberger
and O’Connell [1997]. It appears that sinking of the
geoid centered at the northern tip of New Zealand that
is predicted here is the feature most responsible for pre-
dicted Cenozoic polar wander towards Greenland: The
pole moves such as to maximize the moment of inertia
tensor. If the time scale over which mass redistribu-
tions occur are sufficiently slow, this means polar mo-
tion tends to move regions of sinking geoid to the poles
and regions of rising geoid towards the equator. For the

comparatively fast mass redistributions associated with
recent glaciations however, the delay of the response
cannot be neglected: At present the pole is moving to-
wards Hudson Bay, where a large ice mass melted, and
hence the geoid was sinking about 20,000 years ago, but
is currently rising due to post-glacial rebound. When
caused by mantle flow, a sinking of the geoid can result
from either the sinking of dense material or the rising
of material of low density in a region where the geoid
kernel decreases with depth (here, the mid-mantle). In
the case of this model, it is a combination of both ef-
fects: downgoing cold material apparently related to
subduction of the Tonga slab, and an upwelling in the
neighboring Pacific. However not all the tomographic
models tested lead to this prominent feature of the pre-
dicted geoid change.

Figure 9 compares the computed true polar wander
for another model with recent paleomagnetic true po-
lar wander curves. These do not start at the present
pole, because even for very recent times, the computed
paleomagnetic pole is offset from the present pole. The
implied recent fast polar motion is most likely due to
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Figure 9. True polar wander — geodynamic calculations and paleomagnetic results. The calculation is
done for the viscosity model shown; the degree 2 geoid kernel was computed with a code written by S.
V. Panasyuk. Mantle density anomalies below 220 km are inferred from the latest model of Grand [2001;
pers. comm), (similar to Grand et al. [1997]; available via anonymous ftp amazon.geo.utexas.edu), using
a conversion factor from seismic velocity to density anomalies (dp/p) / (6vs/vs) = 0.3. Density variations
above 220 km depth are disregarded. Paleomagnetic results are from Besse and Courtillot {2000; pers.
comm.] (black circles) and Prevot et al. {2000] (grey dots).

glacial effects, which are not modelled here. The two pa-
leomagnetic results shown here and our modelling agree
in two aspects:

¢ Slow polar motion of only a few degrees during
the Tertiary roughly towards Greenwich.

» Faster polar motion prior to that. This faster mo-
tion ends at around 60 Ma and changes direction
at around 80 Ma in our geodynamic model, and
it ends at 50 or 80 Ma according to the paleomag-
netic results. The direction of faster polar motion
prior to about 80 Ma predicted from the geody-
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namic model differs by about 30 degrees from the
average direction inferred from paleomagnetism.

Such a result was however only obtained for this partic-
ular model. Figure 10 shows results for a larger num-
ber of tomographic models: For a constant conversion
factor below 220 km (solid circles) the models all pre-
dict similar direction and magnitude of polar motion.
One problem with such predictions is, of course, that
we are not able to adequately predict the present-day
geoid, unless we modify viscosity structure and/or con-
version factors from seismic velocity to density anoma-
lies (6p/p) / (6vs/v,) separately for each model. Partic-
ularly, matching the non-hydrostatic excess flattening
of the Earth is a problem, which has been previously

discussed by Forte et al. [1993, 1995]. A better match

can be obtained by choosing a particular viscosity pro-
file, but at the expense of deteriorating the fit to other
geoid coefficients. Here we include some results where
we modify the conversion factors only within reasonable
bounds (Table 1) such that Jiz3 = 0 and Jy3 = 0 and
the polar axis is actually the predicted rotation axis.
This is only done for those three models, for which the
predicted axis of figure is already within 15 degrees of
the rotation axis for a constant (6p/p) / (dvs/vs) = 0.2
below 220 km depth. For the light shaded dots, we
then still adjust the remaining non-zero inertia tensor

elements, for the dark shaded dots no further adjust-

ments are done. Obviously this is a very preliminary
approach, but it shows that directions of polar motion
stay broadly similar, regardless of the procedure taken.
For the dark shaded dots, faster polar wander is pre-
dicted, because here the predicted differences between
the polar and equatorial non-hydrostatic moments of
inertia are much smaller than observed, in agreement
with the results of Forte et al., [1993]. These results
indicate that the procedure of adding the difference be-
tween predicted and observed moments of inertia does
not fundamentally undermine our results.

4. DISCUSSION

We have developed a formalism for viscoelastic re-
laxation combined with the Liouville equations to cal-
culate changes in the rotation axis. Calculations were
done for a very simple non-hydrostatic mass distribu-
tion, consisting of only two positive and two negative
excess masses. This assumed mass distribution (no dy-
namic compensation, no sinking) is far simpler and less
realistic than previously assumed by others [e.g., Spada
et al., 1992, Ricard et al., 1993, but it still contains the
essential physics of true polar wander and makes results

more easily comprehensible, we believe. A direct inte-
gration with no further approximations was compared
with a “quasi-static” approximation, where the rota-
tion axis is assumed to be always exactly parallel to the
axis of maximum moment of inertia, leading to almost
indistinguishable results. An-even simpler steady-state
solution was derived. This solution may be used over
timescales longer than the decay time of the slowest-
decaying mode. For an adiabatic mantle, this will be
around 10,000 — 100,000 years (depending on viscosity),
for an internal chemical boundary, it may be more than
a million years.

Since our approach is independent of previous work,
benchmark comparisons would be important, but would
require a more dedicated effort: Our results obtained
so far cannot be directly compared with results of true
polar wander due to glacial effects, such as compiled

by Mitrovica and Milne [1998], because of the differ-

ent loading history: Whereas these results were ob-
tained for a “saw-tooth” loading history to mimic the
effect of repeated glaciations, we use an instantaneously
imposed constant mass load, or a linear increase of
loading. Also, these models usually contain an elastic
lithosphere, which is not included in our models. The
most successful predictions of the geoid due to mantle
flow use a viscous lithosphere, with viscosity interme-

- diate between the low-viscosity upper mantle and the

high-viscosity lower mantle, and a free upper boundary
[e.g., Thoraval and Richards, 1997). We therefore re-
gard that, with more realistic models of the lithosphere
with lateral variations only beginning to emerge, this
is also most appropriate for modelling true polar wan-
der on the timescales of mantle convection. The litho-
sphere will then not play an important role in deter-
mining rates of polar wander and is hence completely
neglected here. We will qualitatively compare our re-
sults with those compiled by Mitrovica and Milne [1998]
for a high deep mantle viscosity & 10?2 Pas, because in
this case, the elastic lithosphere will play a less impor-
tant role: E.g. comparison of models a, b, ¢ and d of
Ricard et al., [1992], Table 2 shows that in the case of
an isoviscous mantle with 10! Pas, the presence of a
lithosphere increases decay times of modes M0 and CO
by factors 3.8 and 2.4, whereas for a lower mantle vis-
cosity of 3 - 10?2 Pas, the M0 relaxation time remains
the same and the CO0 relaxation time increases by a fac-
tor of 1.6. Hence in the second case, the presence of the
lithosphere will reduce polar wander speed by a much
smaller amount than in the first case. A direct com-
parison is also difficult with published results that ac-
count for dynamic compensation and partly use a more
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Figure 10. Pole positions at 20, 40, 60 and 90 Ma — geodynamic calculations and paleomagnetic results.
Calculations are done for the viscosity model shown in Figure 9 using various tomographic models to infer
mantle density. The models are indicated by numbers: 1 = S12WM13 Su et al. [1994]; 2 = S20A Ekstrom
and Dziewonski [1998], isotropic part; 3 = S20RTS Ritsemna and Van Heijst [2000], 4 = SAW24B16 Mégnin
and Romanowicz [2000], 5 = SBAL18 Masters et al. [2000], 6 = latest model Grand [2001; pers. comm];
Positions indicated by solid circles are calculated for a constant (6p/p) / (6vs/vs) = 0.2 below 220 km
depth; Positions indicated by light and dark shaded filled circles are calculated for a conversion factor
varying with depth, as listed in Table 1, such that predicted geoid coefficients C21 and S2; vanish. The
difference between actual and calculated present-day degree-two geoid coefficients is added for solid circles
and light shaded filled circles; no adjustments are done for dark shaded filled circles. Density variations
above 220 km depth are disregarded. Paleomagnetic results are from Besse and Courtillot [2000; pers.
comm.] (large solid circles) and Prevot et al. [2000] (large shaded circles). Continuous circles show the
pole position at the respective time, with circle radius equal to the 95% confidence interval Ags, dashed
circles show the pole position for the most recent time interval.
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Table 1. Conversion factors (8p/p) / (§vs/v,) used for computing the shaded filled circles in Figure 10, for

different depth intervals and tomographic models.

Model Grand SB4L18 SAW24B16
220 km to 410 km 0.29 0.17 0.10 °
410 km to 670 km 0.28 0.00 0.00
670 km to dim 0.25 0.20 0.20
dim to 2900 km 0.15 0.30 0.32
dim , 2600 km 1800 km 2600 km

complicated time-dependent loading history [Spada et
al., 1992, Ricard et al., 1992, 1993, Vermeersen et al.,
1996] e.g. to model true polar wander driven by sub-
duction. Some other works on long-term polar [Saba-
dini and Yuen, 1989, Ricard and Sabadini, 1990] per-
mit a more quantitative comparison, however because
of differences in the density and elastic structure of the
models, exact agreement with published results cannot
be expected either. With that in mind, we compare
various aspects of our results with other publications:

o Effects of compressibility on rates of polar wander:
From eqn: (17) we see that any difference betvween
viscous incompressible and viscoelastic compress-
ible Earth models is a composite of two effects:
The increase of polar wander speed due to im-
mediate elastic deformation (about 50 % for the
PREM Earth model), and differences in the slow
viscous or viscoelastic rate of change of the inertia
tensor in both cases. The two effects can counter-
act, and for the models shown in Fig. 7 with no
internal boundary, the polar wander speed is still
faster by about 20 % for the viscoelastic Earth
model in the case of steady state, whereas it is
about 10 % slower in Fig. 2 of Mitrovica and
Milne [1998], for a high deep-mantle viscosity, and
can be several tens of % slower according to Ver-
meersen et al. [1996).

¢ Rates of polar wander and deep mantle viscos-
ity: Our results [Steinberger and O’Connell, 1997,
Fig. 2, left panel, solid line] can be re-scaled to
an upper mantle viscosity 10?! Pas (equals 1022
P) and then converted to the rotational exci-
tation factor A; defined by Sabadini and Yuen
[1989]. Our model then yields A; ~ 0.15kyr™*
for a lower mantle viscosity mm = 1022 Pas and
A; ~ 0.029kyr~! for my,, = 1023 Pas, whereas
we read from Ricard and Sabadini, 1990, Fig.
4 corresponding values A; = 0.13kyr~! and ~
0.017kyr™!. Given their description, we conclude
that Sabadini and Yuen [1989] wrongly labelled

their curves and that the continuous one is with-
out chemical boundary, and hence to be compared
with. Under that assumption we read correspond-
ing values of A; ~ 0.15kyr™* and =~ 0.019kyr™!
from their Fig. 1. We attribute our somewhat
faster rates to the absence of an elastic litho-
sphere, which significantly increases the decay
times of modes M0 and C0, and thus slows po-
lar wander [Ricard et al., 1992]. Also the shape
of the curves'is somewhat similar: A; is roughly
inversely proportional to n;, for ny,, between 10%!
and 10?2 Pas, and the curves become somewhat
flatter for larger ny,,. However, Sabadini and
Yuen [1989] show a flattening for 7y, > 1023 Pas,
whereas our curve already becomes flatter above
1022 Pas.

Rates of polar wander and the thickness of a high-
viscosity layer in the deep mantle: In our model,
the speed of polar wander is roughly inversely pro-
portional to the thickness of a high-viscosity layer
in the lower mantle [Steinberger and O’Connell,
1997, Fig. 2, right panel]. For a high viscosity
below 1400 km, the polar wander speed should
therefore be increased by about one third com-
pared to a high viscosity in the entire mantle be-
low 670 km. Mitrovica and Milne [1998] (Fig. 3)
also show that their results are quite similar re-
gardless of the depth of the viscosity boundary,
but that Peltier and Jiang [1996] obtain polar
wander speeds that differ by orders of magnitude
for the two cases.

Effect of a chemical boundary on rates of polar
wander: Our results indicate that before steady-
state is reached, the rates of polar motion with
and without chemical boundary are similar, but
in steady-state a chemical boundary can signif-
icantly reduce speed of polar motion. For the
models shown here, it is reduced by about a fac-
tor of two, whereas in the corresponding models
(with constant mantle viscosity) shown by Saba-



dini and Yuen [1989], Fig. 1 and Ricard and Saba-
dini [1990] Fig. 4 it is reduced by a factor ~ 3.5
and ~ 5.5 respectively. This reduction is due to
the presence of the mode M1 with its long relax-
ation time. If we re-scale our model shown in Fig.
3 to a viscosity of 10?! Pas and hence divide relax-
ation times by 6, we find a M1 relaxation time of
241 kyr, almost the same as Ricard et al. [1992],
for the corresponding model e of their Table 2.
This table also shows that the M1 relaxation time
gets several times longer if an elastic lithosphere
is added to the model, thus the effect of the chem-
ical boundary on rates of polar wander is stronger
in the models with elastic lithosphere. The effect
of a chemical boundary on rates of polar wander is
further discussed by Mitrovica and Milne [1998].

In agreement with results obtained by others, our re-
sults show that the rotational equations can be accu-
rately integrated in an effective manner, and compu-
tational limitations do not pose a problem. While the
mechanism of true polar wander can hence be consid-
ered well understood, and numerical methods for its
computation well developed, the actual true polar wan-
der of the Earth and its relation to the Earth’s geody-
namic evolution remain poorly known and controversial.
A better understanding of actual true polar wander is
not merely of academic interest, as it may be linked to
other issues, such as the evolution of life on Earth, as
e.g. proposed by Kirschvink et al. [1997].

Here we have shown geodynamic models of true po-
lar wander for a number of tomographic models. They
generally agree on a polar motion of the order of 5 de-
grees during the past 60 Ma roughly towards Green-
wich, which is not in conflict with paleomagnetic re-
sults. In order to compute such a slow polar motion
in roughly such a direction, a degree two geoid kernel
that reverses sign with roughly equal magnitude on ei-
ther side is required. Such a geoid kernel is also needed
to successfully explain the present-day geoid. Calcula-
tions for viscosity structures which yield qualitatively
different geoid kernels yield polar motions too large to
be consistent with the observations. If a larger conver-
sion factor from seismic velocity to density is assumed,
an increased magnitude of polar motion results, but the
direction stays more or less the same,

For the viscosity structure adopted here, the com-
puted recent polar motion due to mantle convection
‘typically amounts to about 10 % of that observed geode-
tically, but if the viscosity of the lower mantle is < 1022
Pa s, it may be up to about 40 % [Steinberger and
O’Connell, 1997]. Based on the figures shown by Mitro-
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vica and Milne [1998], and references cited therein, a
10-20 % decrease of polar wander rate due to glacial
effects may quite drastically change inferences on deep
mantle viscosity. On the other hand, mantie flow con-
tribution to rotational variations J, computed from the
same models typically turn out to be well below 1 % of
the observed rate, i.e. there is no significant effect.

Prior to about 60 Ma, the computations apparently
become less reliable and the differences between our var-
ious geodynamic model results increase. Only for the
tomographic model of Grand, [2001, pers. comm.], a
faster polar motion in a direction similar to what is in-
ferred from paleomagnetism was computed. This geo-
dynamic model predicts true polar wander speeds of
not more than about 0.5 degrees per Myr. The pa-
leomagnetic results disagree on the speed of polar mo-
tion: Whereas Besse and Courtillot [2000, pers. comm.]
report speeds of no more than about 0.5 degrees per
Myr, i.e. well below our estimated “speed limit” of
about 1 degree per Myr, Prevot et al. [2000] obtain
higher speeds exceeding 5 degrees per Myr around 80
Ma. Sager and Koppers [2000] use Pacific data and ob-
tain 3-10 degrees per Myr around 84 Ma, however these
results have been questioned by Tarduno and Smirnov
[2001] and Cottrell and Tarduno [2000]. Our estimated
speed limit is of course not a stringent bound, since we
cannot exclude that mantle convection has been more
vigorous and mantle viscosity lower than in our model
at some time in the past, however this is unlikely during
the last 100 Myrs.

A possibly even faster true polar wander event ear-
lier in Earth history has been proposed by Kirschvink
et al., [1997], but questioned by Torsvik et al., [1998)]. It
is presently not possible to set up an actualistic model
of an event so far back in time — over timescales longer
than =~ 100 Ma models of subduction history as well as
the advection of mantle density heterogeneities become
unreliable, and a different approach has to be used:
Richards et al. [1999] therefore combine mantle con-
vection models with the rotational dynamics described
by Ricard et al. [1993]). While this approach does not al-
low to model the actual true polar wander further back
into the past, it can yield insight into questions such as
which properties an Earth model must have such that
the frequencies of “inertial interchanges” (i.e. that the
maximum and intermediate non-hydrostatic principal
moments of inertia become equal) are close to what is
observed (i.e. not more than once every few hundred
Myr).

We anticipate that better constraints on both mantle
density anomalies and mantle viscosity will give more
reliable predictions of true polar wander in the near fu-
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ture. Tomographic models are now beginning to agree
on their large-scale features, and we have shown here
that a number of models generally yield similar predic-
tions of true polar wander. The “observed” true polar
wander that dynamic model predictions are compared
to is also becoming more reliably constrained. Besides
paleomagnetic data, sea level variations have recently
been proposed as an observable to detect true polar
wander [Mound and Mitrovica, 1998, particularly for
events of inertial interchange true polar wander [Mound
et al., 1999].

Furthermore we expect that it will be possible to ex-
plain parts of tomographic anomalies in terms of sub-
duction history in a dynamically consistent model. This
should give better constraints on mantle viscosity and
also facilitate a comparison between true polar wander
predictions from tomography (as done here) and from
subduction history [Richards et al., 1997] and hence also
to better assess the effect of dynamic upwellings on true
polar wander. In this way, input parameters to convec-
tion models and their (in a statistical sense) predicted
true polar wander [Richards et al., 1999] will also be-
come better constrained.
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