Geoid variance reduction for optimized models

Results are shown for viscosity models optimized with three free parameters
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As an example, we compare the

predicted geoid
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for tomographic model SB4L18 and a viscosity model of the “constant strain rate
type, optimized with three free parameters, with the

observed geoid
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In this example, a variance reduction of 72 % is achieved

Advected heat flux profiles for optimized models

Again, results are shown for viscosity models optimized with three free parameters.
Profiles are only plotted for models that achieve a geoid variance reduction of > 70%.
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Results for optimized viscosity models of the “constant strain rate” type. Two of the
models shown look more like a mantle mainly heated from below, one models looks
more like a mantle heated from within.
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Results for optimized viscosity models of the “constant energy dissipation rate” type.

These models tend to overpredict heat flux close to the CMB. We theretfore concentrate
in the following on the “constant strain rate” type.

Optimized viscosity profiles

Results are shown for profiles of the “constant strain rate” type.
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Viscosity profile optimized with three free parameters. Profiles are Viscosity profile optimized with four free parameters. Viscosities in
only plotted for models that achieve a geoid variance reduction of the upper and lower transition zone are independently varied. Profiles
> 70%. The green profile looks very similar to a viscosity model are only plotted for models that achieve a geoid variance reduction
previously proposed based on models of hotspot motion, and features of > 75%. All models favour a low-viscosity “notch”. It is however
a low-viscosity “asthenosphere”. It also gives a good geoid variance not clear whether the slight increase in variance reduction is sufficient
reduction of ~ 70% for the other two models. It is therefore our evidence for such a feature.

preferred model.

Predicted lithospheric stresses

As an example, we compare the stresses predicted based on model S20RTS (Ritsema and Van Heijst, 2000), plus lithospheric contributions
assuming isostasy, to an interpolation from observed stress directions (Bird and Li, 1996).
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In this example, the mean azimuth error is 26.3 degrees.

Conclusions and Outlook

Conclusions

e A geoid variance reduction > 70 % was achieved for flow fields based on three different recent tomography models

e The same three models give acceptable heat flux profiles. Results indicate that the mantle is heated largely from below, but do not tightly
constrain the percentage of internal heating, because different tomography models have different amplitude.

e The angular misfit of predicted and observed lithosphere stresses is 26 to 30°.

e Optimize models feature a viscosity increase by a factor 400 - 600 throughout the mantle.

Outlook

We plan to
e use consistent boundary conditions for geoid and heat flow modelling
e include lateral viscosity variations
e improve the treatment of lithospheric effects (e.g., compositional versus thermal origin of seismic velocity variations)

e extend to time-dependent modelling (allowing us to use hotspot tracks, tpw etc. as modelling constraints)
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