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Overview

e Mantle flow models based on s-wave tomogra-
phy models and constrained by geoid, global heat
flux, postglacial rebound tends to over-predict
CMB excess ellipticity and long-wavelength r.m.s.
CMB topography

e Bulk sound and shear wave anomalies decorrelate
in the lowermost mantle.

In an effort to obtain a better fit to core-mantle
boundary constraints, we construct a flow model that
IS based on both s-wave and bulk sound tomography
models, and contains a distinct chemical layer at the
base of the mantle



Computation of mantie flow
field, boundary deformations and
geoid

deformed
boundary

reference

\ ............ boundary

e Density anomalies (inferred from tomography mod-
els) drive flow, computed with spectral method
(Hager and O’'Connell, 1981)

e Flow deforms boundaries

e Density anomalies and deformed boundaries con-
tribute to geoid anomalies (Richards and Hager,
1984)



Viscosity structure; free model
parameters

e assume viscous rheology, radial viscosity varia-
tions only

e relative viscosity variations in each layer (upper

mantle, transition zone, lower mantle) based on
Calderwood (1999)
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Optimizing the model

Try to minimize MF = MF(1) 4+ ... 4+ MF(n), where
MF(i) describe “misfit” to various observations

1. Geoid
Use variance reduction

Var(Predicted - Observed)
Var(Observed)

to describe fit; MF(1)= - VR)

VR = (1—

observed geoid in m
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2. Heat flux profile

Computed based on density anomaly, flow, thermal
expansivity and heat capacity. MF(2)>0, if part of
the computed curve is not in green area
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3. CMB constraints
A. Topography point constraints

CMB topography [km]

from R. Garcia (pers. comm.)

B. r.m.s. topography (Garcia and Souriau, 2000)
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C. excess ellipticity
490 + 110 m peak-to-valley (from geodetic

straints).
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CMB predictions - no chemical layering
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r.m.s. topography 2147 m

excess ellipticity 2237 m peak-to-valley



Interpretation of seismic velocity variations
in terms of a chemical layer at the base of

the mantle
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dvs and dv. are vertical averages below 2600 km (bot-
tom two layers)
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Optimum value k1 = 0.56



Deflection of lowermost mantle chemical boundary
Inferred from v_s and v_c (Masters et al., 2000)
From flow model

down boundary elevation up

Correlation coefficient = 0.90



CMB predictions - chemical layering at
059 (5
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r.m.s. topography 576 m

excess ellipticity 507 m peak-to-valley



Geoid and heat flux predictions -
layering at 0.59 rp
VR=52.9 %
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Summary

Mantle flow model derived from s-wave tomography in ac-
cordance with geoid, global heat flux, postglacial rebound
— strong increase of viscosity with depth required, but ...

... T'These models tend to over-predict CMB excess elliptic-
ity and long-wavelength r.m.s. CMB topography — There-
fore . ..

... we consider both s-wave and bulk sound velocity anoma-
lies, and assume that decorrelation between bulk sound and
shear wave anomalies in the lowermost mantle is due a
chemically distinct layer of variable thickness at the base
of the mantle.

Thickness variations directly inferred from the tomography
model are highly correlated with thickness variations com-
puted with the flow model (correlation coefficients about
0.9).

We are now able to reasonably fit CMB excess ellipticity
and long-wavelength r.m.s. CMB topography as well, but

CMB topography point constraints are still not well fit.
Also, in contrast to observations, modeled r.m.s. CMB
topography does not significantly increase if shorter wave-
lengths are considered.

Both may indicate that the input density model is less ac-
curate at shorter wavelength



