# Mantle flow models with core-mantle boundary constraints support evidence for chemical heterogeneities in the lowermost mantle

Bernhard Steinberger

Bayerisches Geoinstitut Universität Bayreuth, Germany

Richard Holme

Department of Earth Sciences, University of Liverpool, U.K.

#### Overview

- Mantle flow models based on s-wave tomography models and constrained by geoid, global heat flux, postglacial rebound tends to over-predict CMB excess ellipticity and long-wavelength r.m.s. CMB topography
- Bulk sound and shear wave anomalies decorrelate in the lowermost mantle.

In an effort to obtain a better fit to core-mantle boundary constraints, we construct a flow model that is based on both s-wave and bulk sound tomography models, and contains a distinct chemical layer at the base of the mantle

# Computation of mantle flow field, boundary deformations and geoid



- Density anomalies (inferred from tomography models) drive flow, computed with spectral method (Hager and O'Connell, 1981)
- Flow deforms boundaries
- Density anomalies and deformed boundaries contribute to geoid anomalies (Richards and Hager, 1984)

### Viscosity structure; free model parameters

- assume viscous rheology, radial viscosity variations only
- relative viscosity variations in each layer (upper mantle, transition zone, lower mantle) based on Calderwood (1999)



#### Optimizing the model

Try to minimize MF = MF(1) + ... + MF(n), where MF(i) describe "misfit" to various observations

#### 1. Geoid

Use variance reduction

$$VR = \left(1 - \frac{\text{Var}(\text{Predicted - Observed})}{\text{Var}(\text{Observed})}\right)$$

to describe fit; MF(1) = -VR)



#### 2. Heat flux profile

Computed based on density anomaly, flow, thermal expansivity and heat capacity. MF(2)>0, if part of the computed curve is not in green area



#### 3. CMB constraints

#### A. Topography point constraints



from R. Garcia (pers. comm.)

#### B. r.m.s. topography (Garcia and Souriau, 2000)



#### C. excess ellipticity

490  $\pm$  110 m peak-to-valley (from geodetic constraints).

#### CMB predictions - no chemical layering



r.m.s. topography 2147 m

excess ellipticity 2237 m peak-to-valley

Interpretation of seismic velocity variations in terms of a chemical layer at the base of the mantle

$$\frac{\delta v_s}{v_s} = \frac{1}{\alpha_{s,th}} \frac{\delta \rho}{\rho}_{th} + k_s \delta h$$

$$\frac{\delta v_c}{v_c} = \frac{1}{\alpha_{c,th}} \frac{\delta \rho}{\rho}_{th} + k_c \delta h$$

 $\delta v_s$  and  $\delta v_c$  are vertical averages below 2600 km (bottom two layers)

$$\delta h = \left(\frac{\delta v_c}{v_c} - \frac{\alpha_{s,th}}{\alpha_{c,th}} \frac{\delta v_s}{v_s}\right) \left(k_c - k_s \frac{\alpha_{s,th}}{\alpha_{c,th}}\right)^{-1}$$

$$\frac{\delta \rho}{\rho_{th}} = \frac{\delta v_s}{v_s} \cdot \alpha_{s,th} - k_1 \cdot \alpha_{s,th} \cdot \left(\frac{\delta v_c}{v_c} - \frac{\alpha_{s,th}}{\alpha_{c,th}} \frac{\delta v_s}{v_s}\right)$$

 $k_1:=k_s\cdot\left(k_c-k_s\frac{\alpha_{s,th}}{\alpha_{c,th}}\right)^{-1}$  is additional free parameter. Optimum value  $k_1=0.56$ 

# Deflection of lowermost mantle chemical boundary inferred from v\_s and v\_c (Masters et al., 2000) From flow model



Directly from tomography model



down

boundary elevation

up

Correlation coefficient = 0.90

### CMB predictions - chemical layering at 0.59 $r_{E}$



r.m.s. topography 576 m

excess ellipticity 507 m peak-to-valley

## Geoid and heat flux predictions - layering at 0.59 $r_E$



#### Summary

- Mantle flow model derived from s-wave tomography in accordance with geoid, global heat flux, postglacial rebound

   strong increase of viscosity with depth required, but . . .
- . . . These models tend to over-predict CMB excess ellipticity and long-wavelength r.m.s. CMB topography *Therefore* . . .
- ... we consider both s-wave and bulk sound velocity anomalies, and assume that decorrelation between bulk sound and shear wave anomalies in the lowermost mantle is due a chemically distinct layer of variable thickness at the base of the mantle.
- Thickness variations directly inferred from the tomography model are highly correlated with thickness variations computed with the flow model (correlation coefficients about 0.9).
- We are now able to reasonably fit CMB excess ellipticity and long-wavelength r.m.s. CMB topography as well, but
- CMB topography point constraints are still not well fit. Also, in contrast to observations, modeled r.m.s. CMB topography does not significantly increase if shorter wavelengths are considered.
- Both may indicate that the input density model is less accurate at shorter wavelength