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[1] The Earth’s gravity spectrum can be used as an
observational constraint on geophysical modelling. Here
we show how the spectrum up to degree l = 31 can be
explained to a large part by viscous mantle flow in
combination with a very simple model of random mantle
density anomalies. Efforts to make the calculation more
‘‘realistic’’ by considering effects of thermal boundary layers,
or using density anomalies based on tomography, or
geodynamic modelling, tend to worsen the fit. Results are
rather sensitive to assumptions on density anomalies in the
upper thermal boundary layer. We suggest that, in
combination with other observations, the shape of the
Earth’s gravity spectrum can serve to better constrain radial
viscosity structure, density anomalies and flow in the Earth’s
mantle. Appropriate treatment of the lithosphere and of
lateral viscosity variations will be the main challenges in
modelling this spectrum. INDEX TERMS: 1213 Geodesy and

Gravity: Earth’s interior—dynamics (8115, 8120); 8120

Tectonophysics: Dynamics of lithosphere and mantle—general;

8122 Tectonophysics: Dynamics, gravity and tectonics; 8121

Tectonophysics: Dynamics, convection currents and mantle

plumes; 8162 Tectonophysics: Evolution of the Earth: Rheology—

mantle. Citation: Steinberger, B., and R. Holme, An explanation

for the shape of Earth’s gravity spectrum based on viscous mantle

flow models, Geophys. Res. Lett., 29(21), 2019, doi:10.1029/

2002GL015476, 2002.

1. Introduction

[2] Although following the work of Richards and Hager
[1984] and others, the Earth’s geoid and gravity field have
frequently been used to constrain mantle flow, the shape of
the Earth’s gravity spectrum has been only rarely used.
Recently, Hipkin [2001] showed that, with an appropriate
definition, the gravity spectrum shows several distinct
features; hence it can be expected that, by comparing the
geoid spectrum predicted from geodynamic models with the
observed spectrum, additional insight can be gained: He
defined the average dimensionless gravity power hPli of
each spherical harmonic component of degree l

hPli ¼ l þ 1ð Þ C02
l þ

Xl
m¼1

Cm2
l þ Sm2

l

� � !
ð1Þ

where {Cl
m, Sl

m} are fully normalized spherical harmonic
expansion coefficients of the gravity potential, made

dimensionless by dividing by GM/rE, where GM is the
geocentric gravitational constant and rE is the Earth radius.
On a log-linear plot, this quantity shows breaks in slope at
harmonic degrees l � 12 [Kaula, 1980], 4 and 30. Hipkin
[2001] modelled this spectrum as the sum of four white noise
sources at different depths within the Earth, one in the
lithosphere (50 km depth) and three sub-lithosphere (315 km,
1280 km, >2750 km). Here we extend this work by showing
that the shape of the spectrum can in fact be expected for a
simple model of convection in a viscous mantle.

2. Model Description

[3] We treat the Earth’s mantle as a highly viscous fluid, an
approximation which seems appropriate for the Earth’s
sublithospheric mantle, and has been very successful in
explaining the Earth’s geoid [e.g., Hager and Richards,
1989], but which is probably not adequate for the lithosphere.
We also assume whole mantle flow, i.e. any density anomaly
drives a flow component in the entire mantle. The approach
of computing viscous flow and resulting gravity used here is
essentially the same as developed by Richards and Hager
[1984]. We assume viscous rheology for the lithosphere with
a free upper boundary. We include effects of compressibility
and phase boundaries, as in Steinberger [2000]. However, we
assume that mantle viscosity depends on depth only.
[4] With our assumptions, Cl

m and Sl
m can be related to

the density expansion coefficients drcl
m(r) and drsl

m(r) through
geoid kernels Kl(r):

Cm
l ¼ 3

2l þ 1ð Þ�rrE

Z rE

rCMB

Kl rð Þdrmcl rð Þdr ð2Þ

and likewise for Sl
m. �r is the average density of the Earth,

and rCMB is the radius of the core-mantle boundary. The
geoid kernels sum up the effect of the mantle density
anomalies themselves, and of the deflection of boundaries,
especially the Earth’s surface and the core-mantle boundary,
resulting from flow induced by these density anomalies.
[5] For most calculations, we use a radial mantle viscosity

profile derived by Steinberger and Calderwood [2001],
which is based on current knowledge of the mineral physics
of mantle materials, explains large parts of the geoid, gives a
realistic radial heat flow profile, and predicts slow motions of
hotspots in accord with observed hotspot tracks (see Stein-
berger and O’Connell [1998], where a similar profile was
proposed). In addition, we also use other viscosity profiles
(Figure 1). Most of these were derived by fitting the geoid.
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[6] The following density structures are considered:
1. Random density structure: The mantle is divided into

N = 33 layers of equal thickness. In each layer, coefficients
drcl

m and drsl
m are assumed to be taken from a normal

distribution with zero mean and standard deviation

sðlÞ ¼ c�r � r0 rið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= l l þ 1ð Þ 2l þ 1ð Þ½ 


p
ð3Þ

unless stated otherwise. r0(ri) is the PREM [Dziewonski and
Anderson, 1981] density at the radius ri of layer i, and c�r is
a measure of relative density variations, assumed to be
independent of radius. A spectral dependence / 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ 1ð Þ 2l þ 1ð Þ
p

commonly approximates seismic tomo-
graphy models [Becker and Boschi, 2001, Figure 2]. The
additional factor 1=

ffiffi
l

p
is introduced to account for radial

correlation between layers. We expect the radial extent of
an anomaly to be proportional to its lateral extent. Thus the
effective layer thickness at degree l, and the consequent
amplitude of its mass anomaly Al, is proportional to 1/l. The
number of such layers within the mantle nl is inversely
proportional to their thickness, so nl / l. The cumulative
amplitude over n radial layers is expected to be

ffiffiffi
n

p
times

that of a single layer. Thus the overall amplitude for
anomalies at degree l is

ffiffiffiffi
nl

p
Al / 1=

ffiffi
l

p
, and the ‘‘nominal’’

density anomalies in each layer scale with 1=
ffiffi
l

p
compared

with the ‘‘actual’’ density anomalies. Optionally, thermal
boundary layers of thickness dt and db, are added at the top
and bottom. With these assumptions, the expected value of
hPli is

E hPli½ 
 ¼ 1

2

3c�r
2l þ 1ð Þ�r

 !2"
N

l

XN
i¼1

K rið Þr0 rið Þdð Þ2

þ Ct

XN
i¼1

K rið Þr0 rið Þd 1
 erf
rE 
 ri

dt

� �� � !2

þ Cb

XN
i¼1

K rið Þr0 rið Þd 1
 erf
ri 
 rCMB

db

� �� � !2#
ð4Þ

Here d = (rE 
 rCMB)/N is the layer thickness, and Ct and
Cb are measures of the magnitude of density anomalies in
the boundary layers relative to the bulk mantle.
2. Density structures inferred from mantle tomography

models: We use a constant conversion factor between
relative density and velocity variations (dr/r)/(dvs/vs) = 0.3
[Karato, 1993]. In most cases, we consider velocity
variations only below depth 150 km. This conversion as a
function of depth is rather uncertain, and with the wrong
conversion, even a ‘‘correct’’ velocity and viscosity model
would give the wrong geoid spectrum: Hager and Richards
[1989] and Panasyuk and Hager [2000] discuss further how
the choice of velocity-density conversion is closely related
to the choice of seismic velocity model and viscosity model.
3. Density structure inferred from subduction history.
[7] We compare our model results with the power spec-

trum of JGM2G [Nerem et al., 1994], in a version provided
by S. Panasyuk (pers. comm.). Like Hipkin [2001], this
version uses the hydrostatic equilibrium of the rotating Earth
as reference shape, as is most appropriate in a geodynamic
context. The ‘‘depth to source’’ analysis of Hipkin [2001]
suggests significant contributions from density anomalies in
the lithosphere at higher degrees. Therefore, we restrict our
analysis to spherical harmonic degrees l � 31.

3. Results

[8] Results for hPli and E[hPli] are shown in Figure 2.
They are ‘‘downward continued’’ to depth d670 = 670 km by
multiplying them with [rE/(rE 
 d670)]

2l. This is merely a
matter of presentation, as in this way, the range of values is
approximately minimized. For the plots of E[hPli], c�r is
used as a free parameter, essentially allowing us to slide the
curves up and down in the plot. In the top left panel, the
lightly shaded region estimates the standard deviation of
E[hPli] for the continuous line. Although these error bounds
are very optimistic (we have ignored uncertainties in the
kernels from, e.g., lateral variations in viscosity), 22 out of
the 31 points (71%) from the observed gravity spectrum lie
within the shaded region - which is expected statistically.

Figure 1. Left panel: Viscosity profiles used. (1): Steinberger and Calderwood [2001] (2): Thoraval and Richards [1997]
(3): Forte et al. [1993] (4): Hager and Richards [1989] (5): Steinberger [2000] Right panel: Geoid kernels Kl (r) as defined
in equation (2) for viscosity profile (1). Degree l is indicated at each curve. The kinks of the kernels result from phase
boundaries, which are treated as in Steinberger [2000].
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Therefore the thick solid line is an appropriate fit to the
observed gravity spectrum. A qualitative explanation for this
shape can be attempted based on the geoid kernels: They are
a measure of how much a density anomaly at a given depth
contributes to surface gravity. We tentatively relate the
upper-mantle negative minima of the geoid kernels (right
hand panel of Figure 1) for l > 7 to Hipkin’s upper mantle
white noise depth, the mid-mantle positive maxima of the
kernels to the lower mantle white noise depth, and the lower-
mantle negative minima for l = 2 and 3 to the poorly
constrained lowermost mantle white noise depth. Obviously
this relation is not straightforward; among other factors, the
density anomaly spectrum assumed here is not a white but
‘‘pink’’ or ‘‘red’’ noise gravity source. Other curves in the
top left panel of Figure 2 show effects of thermal boundary
layers, and forms of s(l) different from that in equation (3):
Whereas including a bottom boundary layer changes results
very little, considering a top boundary layer tends to steepen
the slope of E[hPli] for l ^ 15. Simplifying equation (3) by

replacing the factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l þ 1ð Þ 2l þ 1ð Þ

p
by 1/(2l + 1)

produces little change. However, if we omit the factor
1=

ffiffi
l

p
, i.e. assume that the average radial extent of an

anomaly is independent of, rather than inversely propor-
tional to its degree l, the fit significantly deteriorates.
[9] The top right panel of Figure 2 compares results for

different viscosity structures. Although all of these were
derived from optimizing the fit to the geoid, the predicted
gravity spectra differ considerably, and only viscosity struc-
ture (2) yields a similar spectrum to (1). This indicates that the
gravity spectrum may well be useful in addition to geoid or
gravity itself as a constraint on mantle flow models. The
bottom left panel shows results for various tomography
models. Again, results differ considerably from each other.
Comparison of cases (4) and (4b) shows again the strong
dependence on the density anomaly strength in the top
thermal boundary layer. The bottom right panel gives an
example of how a geodynamic model tends to over-predict
anomalies for 12] l� 31 comparedwith those for 2� l] 12.

Figure 2. Observed and computed gravity power spectra. All values are multiplied by [rE/(rE 
 d670)]
2l. Observed values

of hPli are shown in each panel as filled circles connected with a thin solid line. Note the breaks in slope at l � 4, 12.
Computed values of E[hPli] or hPli, are also plotted as solid lines. Top left: Results for viscosity structure (1) (see Figure 1)
and different assumptions about random mantle density anomalies: Continuous line: Ct = Cb = 0. For this case, the region
between E½ P1h i
ð1þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p
Þ and E½ P1h i
ð1
 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p
Þ is drawn in light shading. Long-dashed line: Ct = Cb = 3, dt =

150 km, db = 300 km. Short-dashed line: Factor 1=
ffiffi
l

p
is omitted in equation (3). Dotted line: Factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l þ 1ð Þ 2l þ 1ð Þ

p
in

equation (3) is replaced by 1/(2l + 1). For the latter two cases, again Ct = Cb = 0. Top right: Results for random mantle density
anomalies, Cb = Ct = 0, and mantle viscosity structures (2)–(4) (see Figure 1). Numbers are indicated on curves. Bottom left:
Results for different tomography models: 1 = S12WM13 [Su et al., 1994], 2 = SAW24B16 [Mégnin and Romanowicz, 2000]
3 = SB4L18 [Masters et al., 2000], 4 = S20RTS [Ritsema and Van Heijst, 2000], 5 = S. Grand’s model, obtained in May 2002
from ftp://bratsche.geo.utexas.edu/outgoing/steveg), a development of Grand et al. [1997]. Model 4 is additionally shown
with with conversion factor 0.3 through the entire mantle (labelled (4b)). Bottom right: Continuous line: Result for the slab
density model of Steinberger [2000], obtained with viscosity structure (5). The dashed line gives the corresponding result for
random mantle density anomalies and Cb = Ct = 0.
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4. Conclusions

[10] The results obtained leave us in a somewhat para-
doxical situation: The ‘‘first guess’’ simplest model, based
on a mantle viscosity structure that had been obtained in a
previous, independent effort, and a very simple model of
random density anomalies, gives an almost perfect fit to the
observed gravity spectrum up to lmax = 31: Spectral range
and slope of all straight-line segments of the observed
gravity spectrum are well fit. Efforts to make the model
more ‘‘realistic’’, such as including the effects of thermal
boundary layers, worsen the fit. Gravity spectra predicted
based on seismic tomography models differ considerably
from each other. Neither they nor a geodynamic model
based on subduction history fit the observed spectrum as
well as our simplest ‘‘random source’’ model. Results based
on full convection models were not considered: While the
long-wavelength flow and density structures (l ] 12) may
be modelled realistically by imposing plate motions, com-
putations at the presently accessible Rayleigh numbers are
expected to over-predict intermediate-wavelength 12 ] l ]
31 and under-predict short-wavelength structure. Thus a
similar misfit as for the subduction model (Figure 2, bottom
right) is expected (S. Zhong, pers. comm.). However, both
the viscosity structure and the spectral dependence of
density anomaly magnitude that we have used are based
on models of seismic tomography. We interpret this finding
such that mantle tomography models do tell us something
about the internal density and flow structure of the Earth,
especially on a very large scale, but that we are still far from
quantitative knowledge of the Earth’s mantle density
anomalies, especially on a smaller scale: For example, with
mantle viscosity structure (1) in combination with tomog-
raphy model (3) the geoid can be fit quite well (variance
reduction >70%). This good fit is however largely achieved
by fitting the very low degrees (l = 2 and 3) very well.
Figure 2 shows that for degrees 2 and 3 the actual spectrum
and the modelled spectrum for tomography model (3) do in
fact agree very well, but that for higher degrees the agree-
ment gets increasingly worse. Of course, our ‘‘first guess’’
model is likely to be only one of many that can give an
equally good fit to the observed gravity spectrum. A more
systematic search through parameter space would be
required to map out which models are compatible with
the observed gravity spectrum as well as other constraints.
[11] A major omission from our study has been the

neglect of the effects of lateral variations in mantle viscos-
ity. To obtain a good fit to the spectrum, part of the
modelled density spectrum must compensate for that part
of the geoid that is in reality produced by mode coupling.
This shortcoming of the present model needs to be kept in
mind, and will be addressed further in future work. We
anticipate that in the future the gravity spectrum can serve
as an additional constraint to mantle flow and convection
models, in much the same way as presently geoid, heat flow,
core-mantle boundary topography etc., are used.

[12] Acknowledgments. We thank Shijie Zhong and John Wahr for
discussion of ideas, Peter Molnar for comments on the manuscript, Arthur

Calderwood for supplying his mineral physics models, Svetlana Panasyuk
for supplying gravity coefficients in digital form, all the authors of the
tomography models for making their models publicly available, and Brad
Hager and Roger Hipkin for constructive reviews. Figures were prepared
using GMT graphics [Wessel and Smith, 1995].
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