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1GSA Data Repository item 2007098, informa-
tion on the construction of past plate boundaries, 
Table DR1 (relevant fi nite plate rotation parameters) 
and Figure DR1 (magnetic anomalies in the Bering 
Sea region), is available online at www.geosociety.
org/pubs/ft2007.htm, or on request from editing@
geosociety .org or Documents Secretary, GSA, P.O. 
Box 9140, Boulder, CO 80301, USA.

INTRODUCTION
Age-progressive, intraplate volcanism along 

the Hawaiian-Emperor Chain (Pacifi c plate) led 
Wilson (1963) to fi rst suggest a causal relation-
ship with an upwelling from deep inside Earth 
(later called “mantle plume”) that is overridden 
by a moving plate. However, the Hawaiian-
Emperor Chain ends at the Aleutian subduction 
zone. Its northernmost part, north of, and pos-
sibly including, the Detroit seamount, aged 76–
81 Ma (Keller et al., 1995; Duncan and Keller, 
2004), and oceanic basalts from accretionary 
complexes in eastern Kamchatka (Portnyagin 
et al., 2006), may have formed through chan-
neling of plume material to the ridge (Tarduno 
et al., 2003), hence a corresponding track may 
have formed on the Izanagi and Kula plates. It is 
not clear whether parts of the hotspot track are 
preserved beyond the subduction zone.

The ocean basin in the Bering Sea north of 
the Aleutian Trench is usually interpreted as a 
captured remnant of the Kula plate, which has 
for the most part been subducted (Scholl et al., 
1975, 1986). Hence, it may have preserved older 
parts of the Hawaiian hotspot track. Their exis-
tence and identifi cation could give important 
insights about the age and earlier history of the 
Hawaiian hotspot, thus further constraining the 
nature of mantle plumes.

In this paper, we show that plate-tectonic 
reconstructions (Fig. 1) yield a predicted hot-
spot track through the oceanic part of the Bering 
Sea. It is possible that two ridges in this basin, 
Shirshov and Bowers (Fig. 2), were originally 
formed by the Hawaiian hotspot. However, a 
hotspot track origin contrasts with other inter-
pretations for the formation of the ridges (e.g., 
Cooper et al., 1992; Baranov et al., 1991). We 

therefore commence with a brief review of the 
tectonic setting and conclude on a somewhat 
speculative note how what is proposed here may 
be reconciled with geologic evidence.

REGIONAL TECTONIC SETTING 
OF SHIRSHOV AND BOWERS RIDGES 
IN THE BERING SEA

Based on the age of oldest volcanic activity, 
the Aleutian Arc is believed to have formed at 
ca. 40–55 Ma (Scholl et al., 1987; Jicha et al., 
2006). The ocean fl oor to the north is prob-
ably a piece of captured Kula plate; most of 
this plate subducted beneath continental crust 
from Kamchatka to the Bering Shelf (Scholl 
et al., 1975, 1986). Cooper et al. (1987b) sug-
gested that large structural depressions fi lled 
with deformed sedimentary prisms beneath 
the continental slopes are remnants of ancient 
trenches. Probably Cenozoic crust formed due 
to backarc extension in the Komandorsky and 
possibly Bowers Basins ( Cooper et al., 1987a, 
1992; Baranov et al., 1991).

Only undated arc-type volcanic rocks have 
been dredged from Bowers Ridge (Cooper et al., 
1987a). Thus the ages of formation of  Shirshov 
and Bowers Ridges are unknown. Bowers Ridge 
is bordered on its convex side by a sediment-fi lled 
trench (Ludwig et al., 1971). Seismic, magnetic, 
and gravity data support its interpretation as a 
volcanic arc at a fossil subduction zone (Kienle, 
1971). Trench sediments were deposited and sub-
sequently deformed probably during the Ceno-
zoic (Marlow et al., 1990). Shirshov Ridge is 
characterized by thick sediments along its eastern 
fl ank and steep scarps on its western side (Rabino-
witz and Cooper, 1977). Various concepts of its 
uncertain origin are reviewed by Baranov et al. 
(1991). Rock dredgings on  Shirshov Ridge recov-
ered basalts, gabbros, and other datable rocks 

(Baranov et al., 1991). An 40Ar/39Ar (plagioclase) 
age 27.8 ± 1.1 Ma was determined for an andesite 
(Cooper et al., 1987a). No oceanic-island basalts 
are known to have been recovered from these 
ridges (D. Scholl, 2000, personal commun.). 
These fi ndings and interpretations do not exclude 
the possibility that the ridges were fabricated out 
of pre-existing structures of a different nature. We 
speculate that a hotspot track localized the later 
Bowers and Shirshov Ridges.

PACIFIC PLATE-TECTONIC 
RECONSTRUCTIONS

Reconstructions of relative plate motions 
(Table DR1 in the GSA Data Repository1) and 
geometries in the Pacifi c Ocean Basin are based 
on marine magnetic anomalies. In order to fi nd 
the location of the plates within the Pacifi c 
Ocean Basin relative to the plates surround-
ing it, and to plot them on a map with latitudes 
and longitudes, these reconstructions must be 
embedded in a suitable absolute reference frame. 
A fi xed-hotspot reference frame has frequently 
been used (e.g., Duncan and Clague, 1985). 
However, there are a number of indications that 
the Hawaiian hotspot has moved and was farther 
north in the geologic past. These include analy-
ses of plate circuits (e.g., Raymond et al., 2000), 
sedimentological evidence (Parés and Moore, 
2005), numerical models (e.g., Steinberger et al., 
2004), and paleomagnetic data (e.g.,  Tarduno 
and Cottrell, 1997;  Tarduno et al., 2003). The 
latter indicate that the  Hawaiian hotspot was 
at ~30–35° N at 75–80 Ma and had moved to 
close to its present latitude at the time of the 
Hawaiian-Emperor bend. True polar wander 
(e.g., Besse and Courtillot, 2002) appears not 
to have contributed more than a few degrees of 
latitude change (Tarduno and Smirnov, 2001), 
regardless of whether it is computed in a fi xed-
hotspot reference frame or a mantle reference 
frame that considers hotspot motion (Torsvik 
et al., 2006). We determine the best-fi tting 
Pacifi c plate motion assuming a hotspot motion 
that is broadly consistent with numerical mod-
els for Hawaiian and Louisville hotspot motion 
(Koppers et al., 2004) and paleomagnetic data. 
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We assume the Hawaiian hotspot moved 13° 
southward and 3° eastward between 90 and 
47 Ma, and 2° southward and 2° eastward since 
47 Ma, and the Louisville hotspot has moved 
10° eastward and 4° southward since 120 Ma, 
all at constant speed. Optimization procedure 
and age data from both hotspot tracks are the 
same as in Koppers et al. (2004), who showed 
that new radiometric age data are consistent 
with relative hotspot motion as assumed here. 
Results are included in Table DR1 (see foot-
note 1). Note that the Pacifi c plate motion is 
thus determined independent of the global 
plate circuit and Indo-Atlantic hotspot tracks. 
Pacifi c plate rotation rates before 83 Ma are 
from Duncan and Clague (1985), i.e., fi nite 
rotations at 100 and 150 Ma were corrected 
for inferred hotspot motion since 83 Ma. Con-
struction of plate boundaries is detailed in the 
GSA Data Repository (see footnote 1).

Figure 1 shows reconstructions for this case: 
The Hawaiian hotspot fi rst (top left panel) 
occupied an intraplate location on the Izanagi 
plate, which moved northwestward at a speed 
of >10 cm/yr. After ca. 100 Ma, Pacifi c plate 
motion also had a northward component: The 
Izanagi-Pacifi c boundary moved northward, 
approaching the Hawaiian hotspot at ~8 cm/yr. 
At 100 Ma, the hotspot was ~14° north of the 
plate boundary, at 90 Ma ~7°. It is more uncer-
tain where the Izanagi-Farallon boundary was, 
and hence whether the track was emplaced on 
crust formed at the Izanagi-Pacifi c or Izanagi-
Farallon spreading center. In the fi rst case, it is 
estimated that the track formed at 100–90 Ma 
on 35–17.5 m.y. old crust (now 135–107.5 m.y. 
old), based on an Izanagi-Pacifi c half spread-
ing rate of ~0.4 degrees/m.y. as extrapolated 
from isochrons. In the second case, crustal age 
would be younger. We consider it possible, but 
unlikely, that part of the track for part of the 
time was on the Farallon plate.

During the reorganization of plate bound-
aries in the North Pacifi c at ca. 83 Ma, the Kula 
plate formed from older pre-existing crust of the 
Izanagi, Farallon, and possibly Pacifi c plates, pre-
sumably incorporating the entire Hawaiian hot-
spot track. At ca. 78 Ma, the northward-moving  
ridge crossed over the hotspot; subsequently a 
track was created on the Pacifi c plate, and the 
track on the Kula plate was carried northward. At 
ca. 40–55 Ma, subduction began in the Aleutians, 
and the oceanic crust of the Bering Sea Basin, 
being a fragment of the Kula plate, became part 
of the North American plate at that time. For bet-
ter visibility, we plot tracks regardless of location 
(black on North American, gray on Pacifi c plate 
for ages older than 78 Ma, in Fig. 1).

DISCUSSION
Plate-tectonic reconstructions of the Pacifi c 

region imply that the Hawaiian hotspot was 
located beneath the Izanagi and Kula plates 
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Figure 1. Plate reconstruction explaining how part of the Hawaiian hotspot track could have 
become preserved in the Bering Sea. Arrows indicate plate velocities. Computed hotspot 
tracks are shown on Pacifi c plate for ages younger than 78 Ma, and on Izanagi-Kula–North 
American plate for ages older than 78 Ma, with ages indicated in Ma. 88 Ma: Black arrows 
on Kula/Izanagi plate are Izanagi plate velocities, gray arrows are Kula plate velocities. Kula-
Pacifi c relative motion before 67.7 Ma was assumed to be as in the interval 67.7–55.9 Ma. 
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prior to ca. 75–80 Ma. Part of the track pro-
duced during that time could still be preserved 
in the Bering Sea near Bowers and Shirshov 
Ridges, provided that its ocean crust was part of 
the Kula plate and became attached to the North 
American plate ca. 55–40 Ma. We estimate that 
the preserved part would be ~80–90 m.y. old. 
Figure 2 shows a close-up look at the predicted 
present-day location of that part of the track.

The geologic evidence that Bowers Ridge was 
a volcanic arc in the Tertiary could mean that 
the proximity of predicted track and observed 
ridges is pure coincidence. Shirshov and  Bowers 
Ridges may be structurally unrelated (Rabino-
witz, 1974). Following Cooper et al. (1992), a 
strike-slip zone roughly north-south in direc-
tion may have formed at the location of a pre-
existing  oceanic plateau after subduction was 
initiated in the eastern part of the Aleutian Arc, 
and subsequently, the separate Shirshov and 
Bowers Ridges developed from the originally 
continuous and straight strike-slip zone. We 

suggest here that the supposed oceanic plateau 
has been part of the Hawaiian hotspot track.

The predicted tracks depend on a number of 
assumptions, each uncertain to some degree.

1. Motion of hotspots in the Pacifi c Ocean 
Basin: In our reference case (black continu-
ous lines in Figs. 1 and 2), the Hawaiian hot-
spot moved southward relative to the Louisville 
hotspot. Hence the predicted track is consider-
ably farther north than for fi xed Pacifi c hotspots 
(squares in Fig. 2); in the latter case it passes 
through Komandorsky and Bowers Basins 
instead of the Aleutian Basin. This offset comes 
from relative motion between hotspots; pre-
dicted tracks for coherently moving hotspots are 
the same as for fi xed hotspots.

2. Motion of hotspots in the African hemi-
sphere: Results also depend on the estimated 
motion of the Tristan and Reunion hotspots 
over the past 47 Ma. Their motion is likely to 
be smaller, as discussed in Steinberger et al. 
(2004), and hence has a smaller effect on the 

predicted hotspot track: The track with dia-
monds in Figure 2 was computed with African 
plate motion in a fi xed-hotspot reference frame 
instead of moving hotspots. A number of further 
computations with fi xed and moving hotspots 
gave overall similar results.

3. Motion of Kula and Izanagi plates: During 
the Cretaceous superchron (118–83 Ma), marine 
magnetic anomalies are absent, and the oldest 
well-recognized isochron for the Kula-Pacifi c 
boundary is 67.7 Ma, although older magnetic 
anomalies (70–80 Ma) have been recognized 
by Rea and Dixon (1983) and Mammerickx and 
Sharman (1988). Black and gray arrows, and 
black, light gray, and dark gray lines in Figure 1 
(black, orange, and blue in Fig. 2) are for three 
possible spreading history scenarios with change 
from Izanagi to Kula plate motion at 83, 93, or 
73 Ma, and illustrate uncertainties in azimuth of 
the predicted hotspot track. With the scenario of 
Cooper et al. (1992), a north-south hotspot track 
orientation would be most suitable to explain the 
geometry of Shirshov and Bowers Ridges.

4. Initiation of subduction in the Aleutians: 
An older track is predicted for an earlier time of 
the Bering Sea becoming attached to the North 
American plate. This track would have formed 
on older ocean fl oor. In our plate motion model, 
the Izanagi-Farallon-Pacifi c triple junction was 
captured on the Kula plate at 84 Ma, and thus 
could be preserved east of the hotspot track in 
the Bering Sea. If spreading at this triple junc-
tion had continued for a few million years after 
84 Ma, magnetic anomalies of chron 34 and pos-
sibly 33 could be preserved there. The predicted 
location and orientation of these isochrons rela-
tive to the hotspot track matches approximately 
with the location and orientation of the most 
prominent, approximately north-south–oriented 
magnetic seafl oor lineations in the Aleutian 
Basin (Cooper et al., 1976) (Fig. DR1; see foot-
note 1) relative to Shirshov and Bowers Ridges. 
Magnetic lineations in the southern part of the 
Bering Sea could have formed along the Pacifi c-
Farallon spreading ridge, i.e., the northern con-
tinuation of the Pacifi c-Chinook spreading ridge 
preserved in the Emperor Trough south of the 
Aleutian Trench, as proposed by Rea and Dixon 
(1983). Older crustal ages, such as in the inter-
pretation of Cooper et al. (1976), would require 
earlier subduction initiation in the Aleutian Arc 
than assumed here.

5. Plate motion in the Bering Sea: Our 
reconstructions assume that the Bering Sea has 
moved with the North American plate after 40–
54 Ma. However, motion along strike-slip faults 
in Alaska may have accommodated westward 
motion of the Bering Sea relative to the stable 
North American plate (Cooper et al., 1992). 
This would move the hotspot track computed 
for a moving Hawaiian hotspot toward Shirshov 
and Bowers Ridges and would move predicted 
84 Ma isochrons toward the clearest magnetic 
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seafl oor lineations, which are somewhat east 
and north of Bowers Ridge. This motion may 
be a tectonic extrusion driven by Kula–North 
American convergence (Scholl and Stevenson, 
1991), similar to present-day Anatolia. Amounts 
of motion are, however, diffi cult to quantify.

A hotspot track crossing the Bering Sea is 
a prediction based on current knowledge of 
plate and hotspot motions. This prediction is 
made regardless of fi xed or moving hotspots; 
the preserved part of the track is predicted to be 
younger, and farther to the east, for faster south-
ward motion of the Hawaiian hotspot relative 
to the Louisville hotspot. A relation with Shir-
shov and Bowers Ridges is plausible although 
speculative. We expect that our prediction will 
motivate further work, which may corroborate 
our proposed relation.
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