Journal of African Earth Sciences, Vol. 29, No. 1, pp. 136-1561, 1999

Pergamon . - © 1999 Elsevier Science Ltd
g P"'soasg 5362(99)00085'8 All rights reserved. Printed in Great Britain
0899-5362/99 $- see front matter

The Karoo Supergroup revisited and Madagascar-Africa fits

N.A. RAKOTOSOLOFOQ,' T.H. TORSVIK,?3* |_.D. ASHWAL,' E.A. EIDE? and
M.J. DE WIT*

'Department of Geology, Rand Afrikaans University, PO Box 524, Auckland Park 2006, South Africa
2Geological Survey of Norway, PO Box 3006 Lade, N-7002 Trondheim, Norway
3Institute of Solid Earth Physics, University of Bergen, N-5002 Bergen, Norway

“Department of Geosciences, University of Cape Town, Rondebosch 7700, South Africa

ABSTRACT —New palaeomagnetic data from the Late Permian-Early Jurassic Sakamena and the
Late Carboniferous(?)-Early Permian Sakoa Group from Madagascar (Karoo Supergroup) show
gross similarities with earlier published data. Paleeomagnetic poles based on all studies of the
Sakamena and Sakoa Groups average to 76.7°N and 290.8°E, and 51.3°N and 252.6°E,
respectively, and imply palaeolatitudes of 28°S and 55°S for southwest Madagascar in Late
Permian-Early Triassic and Late Carboniferous(?)-Early Permian times. The majority of the data,
however, are of relatively poor quality and there is no firm evidence for primary magnetic signatures.
A comparison with West Gondwana pale&eomagnetic poles shows that the Lottes and Rowiley fit
produces the best palaeomagnetic match bétween Madagascar and East Africa (Somalia). The
precise Pangaea configuration is still not known, but taken at face value, the Madagascar Sakamena
pole and West Gondwana reference data indicate a Pangaea B or C configuration in Late Permian-
Early Triassic times. However, high quality West Gondwana poles from Late Permian-Early Triassic
times are clearly absent, and there is stronger confidence in West Gondwana poles of Late
Carboniferous-Early Permian age. The latter poles place parts of Gondwana at high southerly
latitudes and in good agreement with the distribution of climatically sensitive lithological data. ©
1999 Elsevier Science Limited. All rights reserved.

RESUME — De nouvelles données paléomagnétiques du Groupe de Sakamena (Permien supérieur
a Jurassique inférieur) et du Groupe de Sakoa (Carbonifére supérieur(?) & Permien inférieur) de
Madagascar (Supergroupe de Karoo) montrent des similitudes grossiéres avec les données déja
publiées. Les poles paléomagnétiques basés sur |’ensemble des études sur les Groupes de Sakamena
et de Sakoa se groupent vers 76.7°N et 290.8°E et 51.3°N et 252.6 °E, respectivement, ce qui
implique des paléolatitudes de 28°S and 55°S pour le sud-ouest de Madagascar au Permien
supérieur / Jurassique inférieur et au Carbonifére supérieur(?)/Permien inférieur. La majorité des
données, cependant, sont de qualité relativement faible et il n'y a pas de preuves solides pour des
signatures magnétiques primaires.

Une comparaison avec les pdles paléomagnétiques du Gondwana occidental montre que les
reconstitutions de Lottes et Rowley reproduisent le meilleur ajustement paléomagnétique entre
Madagascar et I’ Afrique de I'Est (Somalie). La configuration précise de la Pangée n’est pas encore
connue, mais globalement parlant, le pole Sakamena de Madagascar et la référence ouest-Gondwana
indique une configuration Pangée B ou C au Permien supérieur — Trias inférieur. Cependant, les
pdles de haute qualité du Gondwana ouest du Permien supérieur — trias inférieur sont nettement
absents, et nous avons une confiance plus grande dans les pdles du Gondwana ouest du Carbonifére
supérieur — Permien inférieur. Ces derniers pdles placent une partie de Gondwana a des latitudes
sud élevées et sont en bon accord avec la distribution des données lithologiques climat-indicatrices.
© 1999 Elsevier Science Limited. All rights reserved.
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INTRODUCTION

Although the major continental blocks are generally
considered to have converged to form the supercon-
tinent Pangaea during Late Palaeozoic and Early Meso-
zoic times, details about the Pangaea configuration
and assembly timing are matters of dispute (van
der Voo, 1993; Muttoni et a/., 1996; Torcq et al.,
1997). The subsequent break-up of Pangaea in Mid-
Jurassic times proceeded first with two major events:

i) initiation of sea-floor spreading in the Central
Atlantic; and

i) initiation of sea-floor spreading in the Somali
Basin and rifting of the South Gondwana elements
(Antarctica-Australia-Madagascar-india) from Africa-
South America.
Madagascar and India preserve key elements in this
early break-up as they jointly rifted off East Africa
at ca 165 Ma (Coffin and Rabinowitz, 1988).

M Late Cretaceous Volcanics
[ Upper Palaeozoic to Recent Sediments

Precambrian, undifferentiated

Palaeomagnetic study area
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000°E
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0 100 200 km

Figure 1. Simplified geological map of Madagascar and location of the three Phanerozoic sedimentary basins. Area of palasomagnetic
study in southwest Madagascar (Morondava Basin) is shown as an open box (see details in Fig. 2).
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Figure 2. Simplified geological map of the study area (sampling box in Fig. 1). Localities
3-7 contain sub-sites (Table 1), typically located within a few hundred metres. Samples
were drilled in the field and orientated with both sun and magnetic compasses; the

local declination was found to be 20-22°W.

The separation of Africa and Madagascar was
preceded by a long period of continental rifting which
generated basin structures filled with the Upper
Carboniferous(?)-Permian, Triassic and Early-Mid-
Jurassic deposits, collectively referred to as the Karoo
Supergroup. Previous palaeomagnetic analysis of the
rifting history of the Karoo Supergroup in Mada-
gascar included studies where no demagnetisation
was carried out (Nairn 1964), or studies where a
combination of blanket cleaning and subsequent

averaging of the demagnetisation steps gave opti-
mum remanence grouping (Razafindrazaka et al.,
1976; Embleton and McElhinny, 1975; McElhinny
and Embleton, 1976; reviewed in McElhinny et &/.,
1976). It is therefore timely to re-examine the Karoo
Supergroup with modern instrumental and analytical
procedures. The Madagascar data are often utilised
as reference data for West Gondwana, and our main
sampling intent was to test the stability of magneti-
sation via detailed fold and conglomerate tests within
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Table 1. Site mean paiszomagnetic data from the Sakamena and Sakoa Groups {Karoo Supergroup),
southwest Madagascar (Isalo Group exciuded due to the lack of remanence grouping at site level)

In situ Bedding corrected
Rock type Site Dec (°) Inc (°) N Olgg Dec (°) Inc(®)
SAKAMENA GROUP (Late Permian)
Coarse sandstone 3A 7.8 -32.5 6 11.2 014.2 -35.8
Coarse sandstone 3B 341.1 -49.8 4 12.6 350.8 -56.8
Fault gouge 3C Incoherent data
Folded sandstone bed 3D Incoherent data
Shale/sandstone 4A 11.3 -39 5 15.0 018.5 -42.5
Shale/sandstone 4B1 334 -44.3 5 18.3 338.4 -42.4
Shale/sandstone 4B2 334 -46.6 4 16.8 341.5 -47.6
Sandstone lens 4C 6.6 -40.3 3 17.2 357.2 -36.3
Sample mean 353.8 -37.6 27 6.9(6.7) 359.1 -43.9
Site mean 353.7 -43.8 6* 12.2(12.6) 357.5 -44.4
SAKOA GROUP {Late Carboniferous(?)-Early Permian)
Fine grained tillite 5A 342.6 -37.6 5 12.8 015.1 -56.3
Fine grained tillite 5B 338.9 -36 5 19.2 009.2 -57.1
Fine grained tillite 5C 343.9 -43 3 171 023.8 -59.3
Coarse tillite 5D 319.9 -25.5 6 10.4 333.6 -56.3
Tillite boulders 5D Irregular directional behaviour
Fine dark sandstone 6 127.7 +58 12 4.7 205.7 +79.1
Sample mean (BP) 326.2 -44.5 31 6.7(5.9) 006.2 -66.9
mean (NP) 334.0 -34.6 19 7.3(7.3) 001.7 -58.5
Site mean BP 331.8 -40.8 b* 15.8(13.4) 007.0 -62.9

Dec{°)/Inc(°): mean declination/inclination; N: number of samples/sites*; a,. = 95% confidence circle; (): a,, after unfolding;

BP: both polarities; NP: normal polarity.

the Karoo sequences in the Morondava basin,
southwest Madagascar (Figs 1 and 2). As the results
below indicate, these stability tests were mostly
unsuccessful due to the poor magnetic quality of
the rocks, despite careful attempts to avoid the most
weathered rocks which represent a major problem.

GEOLOGICAL SETTING AND
SAMPLING DETAILS

The western third of Madagascar comprises an ex-
tensive sequence of gently west dipping Phanerozoic
sedimentary rocks within three basins, referred to
from north to south as the Diego, Majunga and Moron-
dava Basins (Fig. 1). The Sakoa Group, the oldest
rocks in the Morondava Basin, consist of Late Carboni-
ferous-Early Permian tillites, overlain by Early Permian
coal-bearing horizons and redbeds, and Middle Per-
mian marine limestones (Fig. 2). The Sakoa Group of
the Morondava Basin is most commonly referred to
as Late Carboniferous-Mid Permian in age (Besairie
and Collignon, 1972}, but Hankel (1994) places the
basal Sakoa Group within the Early Permian (Asselian).
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The Sakamena Group, which unconformably over-
lies the Sakoa Group, comprises Late Permian con-
tinental sandstones and conglomerates, followed by
Early Triassic alternating continental sandstones and
marine shales. The Middle Triassic to Early Jurassic
Isalo Group in turn unconformably overlies the Saka-
mena Group, and consists of continental sandstones
(Isalo | and l1). Marine conditions started in the Middle
Jurassic and are represented by interbedded lime-
stones and shales; mixed marine and continental
environments continued into the Early Cretaceous
{Besairie and Collignon, 1972).

The sampling sites included units from the Lower
Sakoa, Lower Sakamena and Upper Isalo (ll). Originally,
a sample was going to be taken from each part of
the succession of the Late Palaeozoic through Jurassic,
but it was often found that intense weathering ren-
dered the rocks useless for palssomagnetic studies.

Isalo Group

The lIsalo |l sandstones were sampled along the
Onilahy River near the Tongobory bridge (Locality
7; Fig. 2). Samples were collected from a flat-lying,
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whitish, cross-bedded coarse sandstone unit (site
7A) and from a one metre thick grey argillaceous
sandstone unit (7B, C).

Sakamena Group

The Lower Sakamena sediments were sampled at
localities 3 and 4 (Fig. 2, Table 1). At locality 3
{Sakamena River), the top of the Lower Sakamena
consists of sandstone units overlain by nodular
shales. Sandstones are grey to slightly reddish and
medium- to coarse-grained. Undulations in the lower
sand unit probably relate to syn-sedimentary slump
folding. The overlying unit is a gently west dipping,
coarse-grained sandstone. These sandstones are cut
by a 290° trending vertical brittle fault, ca 30 cm
wide. Samples were collected from sandstone units
(sites 3A, B), from a folded sand unit (3D} to derive
a local fold test, and from the fault gouge in an
attempt to date the brittle fault event.

Locality 4 (Rianambo River) lies stratigraphically
below locality 3, and consists of alternating sand-
stones and dark grey shales. The lower, greyish,
medium-grained sandstone layers are overlain by a
folded sandstone unit {slump structure), which in
turn is overlain by shale and other sandstone bands
dipping gently to the west. Samples were collected
from a fine-grained sandstone layer (4A), from an
overlying silty shale horizon one metre above {4B),
and from a sandstone lens two metres above all
observed slump structures (4C).

Sakoa Group

Sakoa Group sediments were sampled at localities
5 and 6. At locality 5, where the glacial series crop
out, the basal Sakoa Group consists of alternating
tillite, shale and sandstone. Beds generally dip 30°
to 40° to the west. Sampling included fine tillite at
the upper portion of the glaciogenic deposit (5A),
and fine tillite one metre (5B) and three metres (5C)
above BA. Site 5D was three metres below site A,
where samples from Precambrian cobbles within
the tillite as well as the matrix itself were collected
for a conglomerate test. Locality 6 is approximately
100 m stratigraphically above the tillites, and consists
of grey shale and sandstone layers. Samples were
collected from a thin layer (5-20 cm) of dark grey
argillaceous to silty sandstone.

PALAOMAGNETIC EXPERIMENTS

The natural remanent magnetisation (NRM) was
measured with a JRSA magnetometer in a low field
magnetic environment. Stability of NRM was tested
by both thermal (furnace model MMTD60) and alter-
nating field (two-axis tumbler) demagnetisation.

Characteristic remanence components (ChRc) were
calculated with the least square regression analysis
implemented in the SIAPD computer program of
Torsvik et a/. (1999).

isalo Group

NRM intensities from site 7A vary from 30 to 50
mA m', whilst samples from sites 7B and C had
considerably lower intensities (0.3-0.4 mA m™'). Of
39 analysed samples, 36 proved suitable for reman-
ence component analysis. The Isalo Group yielded
good individual demagnetisation examples, but the
ChRec displayed an unsatisfactory grouping (Fig. 3b).
As an example, Fig. 3a demonstrates a shallow, high
unblocking temperature (HB) component, with north-
west declination, whilst Fig. 3c shows the presence
of a somewhat steeper HB component with north-
east declination (after demagnetisation of an inter-
mediate unblocking component with a northerly de-
clination). In general, a northwest negative grouping
{mostly site 7A), a northeast negative group (mostly
7B) and some aberrant directions, mostly derived
from site 7C samples, are seen. Due to the overall
spread of ChRc, for which there seems to be no
rational explanation (flat-lying beds sampled close
to one other), it was decided not to calculate site
means for the Isalo Group. The bulk of the directional
data would not fit the previous palazomagnetic data
published from the Isalo Group (Fig. 3b; mean Isalo
Group after Embleton and McElhinny, 1975).

Sakamena Group

One-hundred-and-three samples from two main
localities were demagnetised, and NRM intensity
varied between 0.4 and 2.5 mA m™. Seventeen
samples from site 3D, collected in detail around a
local fold, did not provide sensible palseomagnetic
data: additionally the fault gouge (site 3C) failed to
provide coherent data.

The demagnetisation data from the Sakamena
Group are of poor quality {Fig. 4a-c), and HB ChRc
components were typically forced through data
points which showed an irregular, albeit ‘systematic’,
decay towards the origin of the Zijderveld diagrams
(Fig. 4a, b). From localities 3 and4, only 27 samples
proved satisfactory, providing a fair grouping with
north-northwest declinations and intermediate nega-
tive inclinations (Fig. 4d-f; Table 1). Bedding
correction did not improve the directional grouping.

Sakoa Group

Seventy-four samples were demagnetised from the
Sakoa Group with NRM intensities between 0.3 and
1.2 mA m'. Once again, demagnetisation quality
is generally poor (Fig. Ba-c), except for a reverse
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polarity site in the Sakoa Group (site 6). Altogether
31 samples from the Sakoa Group proved ‘satis-
factory’, and ChRc components group into a normal
polarity (northwest declination and negative inclin-
ation) and a consistent reverse, polarity group
showing positive inclinations and declinations due
southeast (site 6). The basal tillites are of normal
polarity. The conglomerate test was unsuccessful
in as much as individual boulders showed erratic
directional behaviour during demagnetisation (Fig.
5¢). For the Sakoa Group some improved directional
grouping was noticed during unfolding (Fig. e, f),
but the fold test is statistically insignificant at the
95% confidence level.

INTERPRETATION OF PALAOMAGNETIC DATA

Samples from the Mid-Jurassic Isalo Group have
excellent response to both thermal and AF demag-
netisation. However, sample grouping (Fig. 3b) is
poor and the Isalo results are excluded in the sub-
sequent discussion. Except for the reverse polarity
Sakoa Group site (site 6), individual demagnetisation
data from the Sakamena and Sakoa Groups are of
poor quality, and remanence components are es-
sentially ‘forced’ through rather ‘noisy’ data (Figs
4a and 5a). However, sample and site mean data
from the Sakamena and Sakoa Group show fair
groupings. Local fold tests {Sakamena) and con-
glomerate tests (Sakoa), which were a main sampling
aim in the current study, did not provide any
conclusive answers due to poor data quality (e.qg.
Fig. 5c).

The Upper Permian-Lower Triassic Sakamena
Group reveals only normal polarity directions; a fold
test is inconclusive and remanence components (in
situ co-ordinates) plot between the expected dipole
field direction {AD} and the present Earth’s field {PEF)
{Fig. 4e). These data compare well with those of
Razafindrazaka et a/. (1976) and McElhinny and
Embleton (1976). It was noticed, however, that
McElhinny and Embleton {1976} also identified two
antipodal reverse polarity sites in the lower section
of the Sakamena Group (Figs 4g and 6a). Razafin-
drazaka et al. (1976) make no mention of bedding
corrections; it is assumed that such corrections were

made. It is difficult to corroborate if the Sakamena
Group magnetisations are primary; they plot close
to the axial dipole and the present Earth’s magnetic
field direction, and the only argument for a primary
signature of the Sakamena Group is the observation
of dual polarity (antipodal} magnetisations which
might be stratigraphically linked (McElhinny and
Embleton 1976).

From the Sakoa Group a dual polarity magnetisa-
tion structure was observed, but the two polarity
groups are not antipodal {i.e. do not share a common
mean at the 95% confidence level), and the reverse
polarity data (site 6) are much better grouped. Com-
pared with the Sakamena Group, /n situ magnetisa-
tions plot somewhat to the west of the axial dipole
field direction (Figs 4e, 5e and 6a). The basal tillites
are of normal polarity, while the overlying shale and
sandstone are of reverse polarity (site 6). The latter
reverse polarity accords with the results of Raza-
findrazaka et a/. (1976) and McElhinny and Embleton
(1976). Stepwise unfolding improves remanence
grouping (only when combining both polarity groups),
but like McElhinny and Embleton (1976), a
statistically significant positive fold test was not
achieved. The finding of a normal polarity magneti-
sation is worrying: First, the McElhinny and Embleton
{(1976) study did not find normal polarity data.
Second, the normal and reverse directions are not
antipodal. Third, the age of the Sakoa Group is within
the reverse Kiaman Superchron (ca 311-262 Ma
depending on the applied time scale). Following
Hankel (1994), the glacial basal beds of the Sakoa
Group could be of Asselian (basal Permian) age, and
a short normal polarity period (Fig. 6a) has been
recognised within this epoch {see Opdyke and Chan-
nell, 1996). The data presented here are from the
extreme lower part of the tillite, and it is therefore
possible that the Asselian normal polarity interval
within the Kiaman Superchron has been recorded.
However, the normal polarity data, which are of poor
quality, are suspiciously similar to the younger Saka-
mena Group (Fig. 6a) and may very well represent a
younger normal polarity overprint. It was therefore
decided to exclude the Sakoa Group normal polarity
directions when calculating mean directions and
palazomagnetic poles (Table 2).

Figure 6. (a) In situ mean directions (present study) and a , confidence circles (Table 2) compared with the axial dipole field (AD)
and the present Earth’s magnetic field (PEF) for the sampling region. Inset diagram: Permo-Carboniferous magnetic polarity scale
(Opdyke and Channel, 1996; Eide and Torsvik, 1996). (b) Palaeomagnetic poles for the Sakamena and Sakoa Groups (Table 2),
Isalo Group (Embleton and McElhinny 1976} and Late Cretaceous volcanics and dykes (Torsvik et al., 1999) from Madagacar. All
poles are plotted with confidence ovals. CP: Sakoa Group, PT: Sakamena Group, TJ: Isalo Group; LC: Late Cretaceous volcanics
and dykes. Paleeogeographic reconstruction of Madagascar (shaded continent) according to mean poles for the Sakamena (PT)
and Sakoa (CP) Groups (Table 2). The intermediate to high palaeolatitude for Madagascar calculated from the Sakoa Group data
/s consistent with glacial deposits in the basal Sakoa Group (lithostratigraphical equivalent of the Dwyka glacial deposits in South
Africa and India). Note that all palseomagnetic poles in diagrams are plotted as south poles, but listed as north poles in all tables.
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Table 3. Some published reconstruction parameters used for Madagascar-Africa fits, and statistics on
the fits

Lat. (°N) Long. (°E) Rotation angle (°) CPGCD PTGCD Mean Reference
-12.53 -54.96 17.46 9.7 (1) 11.0(1) 10.4 Lottes & Rowley {1990)
-9 -47 15 12.8 11.3(3) 12.1 Smith & Hallam (1970)
-6.685 -73.317 18.396 9.8 (2) 156.7 12.8 Yardimcilar & Reeves (1998)
16.3 148.6 -13.8 14.5 11.6 13.1  Norton & Sclater {1979)
10 150 -14.2 15.2 11.2(2) 13.2 Coffin & Rabinowitz (1987)
1.9 105.6 -16.9 11.8 16.1 14.0 Bunce & Molnar (1977)
-3.41 -81.7 19.73 10.3 (3) 18.2 14.3 Lawver & Scotese (1987)
-7 109 -16.0 13.7 15.5 14.6 Scrutton et al. (1981)
-b.5 -90.6 21.12 11.4 21.7 16.6 Lawver et al. (1992)
0 0] 0 26.3 25.3 25.8 Present position
-48 70 14 26.5 25.7 26.1 Flores (1970)

References are sorted according to the best overall fits (‘Mean’ column).

CPGCD =Great Circie Distance (in degrees} between the Sakoa Group pole and the reference pole (Upper Carboniferous-Early
Permian).

PTGCD = Great Circle Distance between the Sakamena Group pole and the reference pole (Upper Permian-Early Triassic); Numbers
in brackets are the fit ranks (1 to 3). Mean: (CPGCD + PTGCD)/2.

Because the data, except for the normal polarity
directions of the Sakoa Group described above,
generally correspond with those of the earlier studies
{Razafindrazaka et a/., 1976; McElhinny and Emble-
ton, 1976), and because of the very low number of
successfully tested samples and sites in all studies
to date (Table 2), it was decided to combine data
from all studies to calculate mean directions and
palzeomagnetic poles (Fig. 6b} for the Sakamena
and Sakoa Groups. In Fig. 6b the mean poles have
also been included for the Late Triassic-Mid Jurassic
Isalo Group (Embleton and McElhinny, 1975} and
Upper Cretaceous (post-drift) volcanics and dykes
{Torsvik et al., in press) from Madagascar. There is
a somewhat disturbing lack of systematic differences
between the Isalo and Sakamena Groups; this either
suggests insignificant apparent polar wander, or that
the Sakamena Group was reset in Middle Jurassic
or younger times.

MADAGASCAR-AFRICA FITS

Several published fits exist for Madagascar-southeast
Africa (most of them listed in Table 3 and Fig. 7),
and these fits have been tested palaeomagnetically
(Fig. 8). Critical to this fitting exercise, however, are
(1) good reference data from Gondwana, and in
particular from West Gondwana; and (2} that the
Madagascar poles are based on primary magnetisa-
tions (not yet proven). With respect to the first point,
there is no intention to review the entire Gondwana
database, and therefore palaeomagnetic poles inclu-
ded in three recently published mean poles for the
Late Carboniferous-Early Permian and Late Permian-
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Early Triassic times (Table 4) were selected, for which
new mean poles were calculated (source 4 in Table
4). For comparison a high quality Late Carboniferous
{(Namurian-Westphalian) pole is also included from
East Gondwana (Australia, Opdyke et al., 1998).
All poles are listed (Table 4) and plotted (Fig. 8) in
South African co-ordinates, and relative rotation
parameters are those of Lottes and Rowley (1990).

Given the uncertainty in the mean poles derived
from the Sakamena and Sakoa Groups, overlap with
the listed ‘reference’ poles is possible in several of
the proposed Madagascar-Africa fits (Fig. 7). A
common procedure to test the tightness of fits is to
calculate the angular distance (GCD: great circle
distance in degrees) between poles in different fits.
The GCD between the Sakoa Group and the Late
Carboniferous-Early Permian reference pole, and the
Sakamena Group and the Late Permian-Early Triassic
reference pole in some proposed Madagascar-Africa
fits are listed in Table 3. A mean value was obtained
by simply averaging the GCD values for the two
different geological times.

The Flores (1970) fit, which differs radically from
all the other fits (Fig. 7), is clearly the least satis-
factory with an average GCD of 26.1° (Table 3). In
general, the best fits can be invoked for the Sakoa
Group, and the best match (GCD =9.7°) is achieved
by the Lottes and Rowley {1990) fit; on average
this fit has also the lowest GCD (10.4°). It also
produces a good fit (Fig. 8b) with the most recent
Australian (East Gondwana) pole of Opdyke et al.
(1998). The Lottes and Rowley (1990) fit is tight,
and Madagascar overlaps the present day coastline
of Africa (Figs 7 and 8b), but it is considered the
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best statistical fit from the palaaomagnetic data. An-
other tight fit, based on aeromagnetic data (Yar-
dimcilar and Reeves, 1998}, also produces a good
fit for the Sakoa Group (Table 3). However, given
the resolution power of the paleeomagnetic data,
one cannot statistically distinguish this fit from less
tight fits, e.g. the Coffin and Rabinowitz (1987) fit
for the Late Permian-Early Triassic (Fig. 8c, Table 3),
which is based on the oldest identified magnetic
anomalies in the Somali Basin (Mid-Jurassic, ca 166
Ma). However, the Lottes and Rowley (1990} fit
scores best in both time periods, and is thus recom-
mended for future work.

PALAOLATITUDE

If a.primary magnetic signature of the Sakoa and
Sakamena Group (Madagascar) is accepted, this
implies palaeolatitudes of 55°S and 28°S for south-
west Madagascar in Late Carboniferous(?)-Early

Permian (Sakoa} and Late Permian-Early Triassic (Saka-
mena) times, respectively. The latter palaolatitude
estimate is not very different from the present latitu-
dinal position of Madagascar (Fig. 6b), and implies
a 3000 km northward drift of Madagascar during
the Permian. Given the age difference between the
two poles of between 30-40 Ma, this yields high
northward drift velocities (8-10 cm a™') during Per-
mian times. It is essentially this rapid Permian shift
which, if correct, complicates Pangsea reconstruc-
tions. In Late Carboniferous-Early Permian times it
is possible, within the resolution power of palaeomag-
netic data, to have an almost classic Pangaea A1 fit
(Bullard et al., 1965), since all the Gondwanan ele-
ments are located in the southern hemisphere (Fig.
9a). The rapid northward shift of Gondwana during
the Permian, however, places parts of Gondwana in
latitudes too high relative to Eurasia, and Gondwana
has therefore customarily been transferred eastward
to avoid continental overlap (exemplified in Fig. 9b).
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Table 4. Some published mean poles for South America, Africa or combined West Gondwana
listed in South African co-ordinates (see Fig. 8 and text)

Data source area A95 Lat. Long. Age (Range) Ref
(°N) (°E) {in Ma)

Late Permian-Early Triassic:

South America 7.3 52.9 259.0 244 (238-256) 1

Africa 8.3 60.2 260.1 237 (235-238) 1*

West Gondwana (South America-Africa) 9.0 b4.7 244 .4 256 {246-266) 2

West Gondwana (South America-Africa) 8.2 55.3 253.3 250 (235-266) 4

Late Carboniferous-Early Permian:

West Gondwana (South America-Africa) 7.0 27.4 245.7 274 (267-281) 2

West Gondwana (South America-Africa) 8.0 28.1 227.8 295 (282-308) 2

West Gondwana (South America-Africa) 5.7 32.1 227.9 272 (263-280) 3

West Gondwana (South America-Africa) 6.9 29.9 231.9 285 (263-308) 4

A95 =95% confidence circle about poles; References: 1: Torcq et a/. (1997) (*excluding two of their listed entries, i.e.
the Morocco Issaldin and Tanzania poles); 2: van der Voo (1993, his Table 5.8); 3: Lottes and Rowley {1990); 4: this
study using all the data listed in sources 1-3 (excluding existing Madagascar results). Relative fits between South
America, northwest Africa and South Africa after Lottes and Rowley (1990).

Equator

= ‘,‘ 7

Early Triassic

GONDWANA
Late Carboniferous-Early Permian

Figure 9. (a) Late Carboniferous to Early Permian reconstruction of Gondwana based on the Sakoa Group combined with West
Gondwana pole shown in Fig. 8 (see also Table 4). Mean reconstruction pole latitude = 30.6 °; longitude = 232. 7 °E (A95=6.8°).
Continental fits are those of Lottes and Rowley (1880). Distribution of tillites is denoted T. (b) Example of an Early Triassic
reconstruction (Torsvik and Eide, 1998) indicating the difference between a Pangaea A and B configuration. In the Pangaea B
configuration, Gondwana is displaced eastward in order to avoid continental overlaps.
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Depending on the extent of eastward Gondwana
translation, Pangaea configurations have been deno-
ted B or C (cf. excellent overview in van der Voo,
1993). Taken at face value, the Madagascar data
suggest Pangzea B or C fits in Late Permian times. It
is stressed, however, that many of the West Gondwana
Late Permian-Early Triassic poles, like the Madagascar
data, are of poor quality, and that the Sakamena
Group magnetisation is not proven as primary. The
probably more reliable Sakoa Group data reveals high
southerly palaolatitudes, consistent with the
presence of glacial deposits, and resulted from the
Dwyka glaciation throughout Gondwana in Carboni-
ferous-Early Permian times (Fig. 9a).

CONCLUSIONS

Demagnetisation data from rocks of the Karoo Super-
group are generally of poor quality. The best indivi-
dual demagnetisation data are observed from the
Middle-Jurassic Isalo Group, but poor remanence
grouping precludes calculation of a group mean
direction. Directional resuits from the Late Permian-
Early Jurassic Sakamena and the Late Carboni-
ferous(?)-Early Permian Sakoa Group show gross
similarities with earlier published data. Most data,
however, are of relatively poor quality and there is
no firm evidence that proves a primary remanence.
Local fold and conglomerate tests were inconclusive
due to the poor magnetic properties of the rocks.

A comparison with West Gondwana palasomag-
netic poles shows that the Lottes and Rowley (1990)
fit produces the best palasomagnetic match between
Madagascar and East Africa (Somalia), but other
less tight fits, can be considered within the resolution
of the pala2omagnetic data, most notably for Upper
Permian-Lower Triassic times (e.g. Coffin and Rabino-
witz, 1987).

Given the lack of high quality West Gondwana
poles from Late Permian-Early Triassic times, the
precise Pangaea configuration is still not known, but,
taken at face value, the Madagascar Sakamena pole
and palasomagnetic poles utilised as reference data
from West Gondwana suggest a Pangaea B or C
configuration well into the Triassic. On the other
hand, there is stronger confidence in West Gon-
dwana poles of Late Carboniferous-Early Permian
age. These poles place parts of Gondwana in high
southerly fatitudes, and is in agreement with the
distribution of climatically sensitive lithological data.
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